IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v79y2015i4p573-600.html
   My bibliography  Save this article

Detecting heterogeneous risk attitudes with mixed gambles

Author

Listed:
  • Luís Santos-Pinto
  • Adrian Bruhin
  • José Mata
  • Thomas Åstebro

Abstract

We propose a task for eliciting attitudes toward risk that is close to real-world risky decisions which typically involve gains and losses. The task consists of accepting or rejecting gambles that provide a gain with probability $$p$$ p and a loss with probability $$1-p$$ 1 - p . We employ finite mixture models to uncover heterogeneity in risk preferences and find that (i) behavior is heterogeneous, with one half of the subjects behaving as expected utility maximizers, (ii) for the others, reference-dependent models perform better than those where subjects derive utility from final outcomes, (iii) models with sign-dependent decision weights perform better than those without, and (iv) there is no evidence for loss aversion. The procedure is sufficiently simple so that it can be easily used in field or lab experiments where risk elicitation is not the main experiment. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Luís Santos-Pinto & Adrian Bruhin & José Mata & Thomas Åstebro, 2015. "Detecting heterogeneous risk attitudes with mixed gambles," Theory and Decision, Springer, vol. 79(4), pages 573-600, December.
  • Handle: RePEc:kap:theord:v:79:y:2015:i:4:p:573-600
    DOI: 10.1007/s11238-015-9484-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11238-015-9484-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-015-9484-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lattimore, Pamela K. & Baker, Joanna R. & Witte, Ann D., 1992. "The influence of probability on risky choice: A parametric examination," Journal of Economic Behavior & Organization, Elsevier, vol. 17(3), pages 377-400, May.
    2. Houser, Daniel & Winter, Joachim, 2004. "How Do Behavioral Assumptions Affect Structural Inference? Evidence from a Laboratory Experiment," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 64-79, January.
    3. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    4. Stahl Dale O. & Wilson Paul W., 1995. "On Players' Models of Other Players: Theory and Experimental Evidence," Games and Economic Behavior, Elsevier, vol. 10(1), pages 218-254, July.
    5. Anna Conte & John D. Hey & Peter G. Moffatt, 2018. "Mixture models of choice under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 1, pages 3-12, World Scientific Publishing Co. Pte. Ltd..
    6. Armin Falk & James J. Heckman, 2009. "Lab Experiments are a Major Source of Knowledge in the Social Sciences," Working Papers 200935, Geary Institute, University College Dublin.
    7. Ebert, Sebastian & Wiesen, Daniel, 2009. "An experimental methodology testing for prudence and third-order preferences," Bonn Econ Discussion Papers 21/2009, University of Bonn, Bonn Graduate School of Economics (BGSE).
    8. Glenn Harrison & E. Rutström, 2009. "Expected utility theory and prospect theory: one wedding and a decent funeral," Experimental Economics, Springer;Economic Science Association, vol. 12(2), pages 133-158, June.
    9. Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.
    10. Adrian Bruhin & Helga Fehr-Duda & Thomas Epper, 2010. "Risk and Rationality: Uncovering Heterogeneity in Probability Distortion," Econometrica, Econometric Society, vol. 78(4), pages 1375-1412, July.
    11. Helga Fehr-Duda & Adrian Bruhin & Thomas Epper & Renate Schubert, 2010. "Rationality on the rise: Why relative risk aversion increases with stake size," Journal of Risk and Uncertainty, Springer, vol. 40(2), pages 147-180, April.
    12. Mohammed Abdellaoui & Han Bleichrodt & Corina Paraschiv, 2007. "Loss Aversion Under Prospect Theory: A Parameter-Free Measurement," Management Science, INFORMS, vol. 53(10), pages 1659-1674, October.
    13. Mohammed Abdellaoui & Han Bleichrodt & Olivier L’Haridon, 2008. "A tractable method to measure utility and loss aversion under prospect theory," Journal of Risk and Uncertainty, Springer, vol. 36(3), pages 245-266, June.
    14. Alma Cohen & Liran Einav, 2007. "Estimating Risk Preferences from Deductible Choice," American Economic Review, American Economic Association, vol. 97(3), pages 745-788, June.
    15. Bruno Jullien & Bernard Salanie, 2000. "Estimating Preferences under Risk: The Case of Racetrack Bettors," Journal of Political Economy, University of Chicago Press, vol. 108(3), pages 503-530, June.
    16. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    17. Cary Deck & Harris Schlesinger, 2010. "Exploring Higher Order Risk Effects," Review of Economic Studies, Oxford University Press, vol. 77(4), pages 1403-1420.
    18. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    19. Eyal Ert & Ido Erev, 2010. "On the Descriptive Value of Loss Aversion in Decisions under Risk," Harvard Business School Working Papers 10-056, Harvard Business School.
    20. Pamela K. Lattimore & Joanna R. Baker & A. Dryden Witte, 1992. "The Influence Of Probability on Risky Choice: A parametric Examination," NBER Technical Working Papers 0081, National Bureau of Economic Research, Inc.
    21. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    22. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2012. "Salience Theory of Choice Under Risk," The Quarterly Journal of Economics, Oxford University Press, vol. 127(3), pages 1243-1285.
    23. Tobias Broenner & Rene Levinsky & Jianying Qiu, 2007. "A Note on Skewness Seeking: An Experimental Analysis," Jena Economic Research Papers 2007-079, Friedrich-Schiller-University Jena.
    24. Ulrich Schmidt & Horst Zank, 2005. "What is Loss Aversion?," Journal of Risk and Uncertainty, Springer, vol. 30(2), pages 157-167, January.
    25. Kobberling, Veronika & Wakker, Peter P., 2005. "An index of loss aversion," Journal of Economic Theory, Elsevier, vol. 122(1), pages 119-131, May.
    26. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    27. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    28. Tomomi Tanaka & Colin F. Camerer & Quang Nguyen, 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam," American Economic Review, American Economic Association, vol. 100(1), pages 557-571, March.
    29. Steven D. Levitt & John A. List, 2007. "What Do Laboratory Experiments Measuring Social Preferences Reveal About the Real World?," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 153-174, Spring.
    30. Schoemaker, Paul J H, 1982. "The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations," Journal of Economic Literature, American Economic Association, vol. 20(2), pages 529-563, June.
    31. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    32. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amedeo Piolatto & Matthew D. Rablen, 2017. "Prospect theory and tax evasion: a reconsideration of the Yitzhaki puzzle," Theory and Decision, Springer, vol. 82(4), pages 543-565, April.
    2. Inigo Iturbe-Ormaetxe & Giovanni Ponti & Josefa Tomás, 2015. "Some (Mis)facts about Myopic Loss Aversion," Working Papers CESARE 6/2015, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    3. Engel, Christoph, 2020. "Estimating heterogeneous reactions to experimental treatments," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 124-147.
    4. Adrian Bruhin & Maha Manai & Luis Santos-Pinto, 2018. "Risk and Rationality:The Relative Importance of Probability Weighting and Choice Set Dependence," Cahiers de Recherches Economiques du Département d'économie 18.04, Université de Lausanne, Faculté des HEC, Département d’économie.
    5. Iturbe-Ormaetxe, Iñigo & Ponti, Giovanni & Tomás, Josefa, 2019. "Is it myopia or loss aversion? A study on investment game experiments," Economics Letters, Elsevier, vol. 180(C), pages 36-40.
    6. Adrian Bruhin & Maha Manai & Luis Santos-Pinto, 2019. "Risk and Rationality:The Relative Importance of Probability Weighting and Choice Set Dependence," Cahiers de Recherches Economiques du Département d'économie 19.01new, Université de Lausanne, Faculté des HEC, Département d’économie.
    7. Anat Bracha, 2020. "Investment Decisions and Negative Interest Rates," Management Science, INFORMS, vol. 66(11), pages 5316-5340, November.
    8. Salter, Ammon & Salandra, Rossella & Walker, James, 2017. "Exploring preferences for impact versus publications among UK business and management academics," Research Policy, Elsevier, vol. 46(10), pages 1769-1782.
    9. Bruhin, Adrian & Janizzi, Kelly & Thöni, Christian, 2020. "Uncovering the heterogeneity behind cross-cultural variation in antisocial punishment," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 291-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Kpegli & Brice Corgnet & Adam Zylbersztejn, 2020. "All at Once! A Comprehensive and Tractable Semi-Parametric Method to Elicit Prospect Theory Components," Working Papers halshs-03016517, HAL.
    2. Ferdinand M. Vieider & Clara Villegas-Palacio & Peter Martinsson & Milagros Mejía, 2016. "Risk Taking For Oneself And Others: A Structural Model Approach," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 879-894, April.
    3. Galarza, Francisco, 2009. "Choices under Risk in Rural Peru," MPRA Paper 17708, University Library of Munich, Germany.
    4. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    5. Georgalos, Konstantinos & Paya, Ivan & Peel, David A., 2021. "On the contribution of the Markowitz model of utility to explain risky choice in experimental research," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 527-543.
    6. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE.
    7. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE.
    8. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.
    9. Kairies-Schwarz, Nadja & Kokot, Johanna & Vomhof, Markus & Weßling, Jens, 2017. "Health insurance choice and risk preferences under cumulative prospect theory – an experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 137(C), pages 374-397.
    10. Levon Barseghyan & Francesca Molinari & Ted O'Donoghue & Joshua C. Teitelbaum, 2013. "The Nature of Risk Preferences: Evidence from Insurance Choices," American Economic Review, American Economic Association, vol. 103(6), pages 2499-2529, October.
    11. Erner, Carsten & Klos, Alexander & Langer, Thomas, 2013. "Can prospect theory be used to predict an investor’s willingness to pay?," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 1960-1973.
    12. Thomas Epper & Helga Fehr-Duda & Adrian Bruhin, 2011. "Viewing the future through a warped lens: Why uncertainty generates hyperbolic discounting," Journal of Risk and Uncertainty, Springer, vol. 43(3), pages 169-203, December.
    13. Fehr-Duda, Helga & Epper, Thomas & Bruhin, Adrian & Schubert, Renate, 2011. "Risk and rationality: The effects of mood and decision rules on probability weighting," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1), pages 14-24.
    14. Ryan O. Murphy & Robert H. W. ten Brincke, 2018. "Hierarchical Maximum Likelihood Parameter Estimation for Cumulative Prospect Theory: Improving the Reliability of Individual Risk Parameter Estimates," Management Science, INFORMS, vol. 64(1), pages 308-328, January.
    15. Gächter, Simon & Johnson, Eric J. & Herrmann, Andreas, 2007. "Individual-Level Loss Aversion in Riskless and Risky Choices," IZA Discussion Papers 2961, Institute of Labor Economics (IZA).
    16. Horst Zank, 2010. "On probabilities and loss aversion," Theory and Decision, Springer, vol. 68(3), pages 243-261, March.
    17. Booij, Adam S. & van de Kuilen, Gijs, 2009. "A parameter-free analysis of the utility of money for the general population under prospect theory," Journal of Economic Psychology, Elsevier, vol. 30(4), pages 651-666, August.
    18. Glenn W. Harrison & J. Todd Swarthout, 2016. "Cumulative Prospect Theory in the Laboratory: A Reconsideration," Experimental Economics Center Working Paper Series 2016-04, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University.
    19. Helga Fehr-Duda & Adrian Bruhin & Thomas Epper & Renate Schubert, 2010. "Rationality on the rise: Why relative risk aversion increases with stake size," Journal of Risk and Uncertainty, Springer, vol. 40(2), pages 147-180, April.
    20. Vieider, Ferdinand M. & Truong, Nghi & Martinsson, Peter & Pham Khanh Nam & Martinsson, Peter, 2013. "Risk preferences and development revisited: A field experiment in Vietnam," Discussion Papers, WZB Junior Research Group Risk and Development SP II 2013-403, WZB Berlin Social Science Center.

    More about this item

    Keywords

    Individual risk-taking behavior; Latent heterogeneity ; Finite mixture models; Reference-dependence; Loss aversion; C91; D81;
    All these keywords.

    JEL classification:

    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:79:y:2015:i:4:p:573-600. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.