IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v31y2008i2p191-207.html
   My bibliography  Save this article

Are candlestick technical trading strategies profitable in the Japanese equity market?

Author

Listed:
  • Ben Marshall
  • Martin Young
  • Rochester Cahan

Abstract

No abstract is available for this item.

Suggested Citation

  • Ben Marshall & Martin Young & Rochester Cahan, 2008. "Are candlestick technical trading strategies profitable in the Japanese equity market?," Review of Quantitative Finance and Accounting, Springer, vol. 31(2), pages 191-207, August.
  • Handle: RePEc:kap:rqfnac:v:31:y:2008:i:2:p:191-207
    DOI: 10.1007/s11156-007-0068-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11156-007-0068-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-007-0068-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eli Bartov & Myungsun Kim, 2004. "Risk, Mispricing, and Value Investing," Review of Quantitative Finance and Accounting, Springer, vol. 23(4), pages 353-376, December.
    2. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    3. Kenneth A. Kavajecz, 2004. "Technical Analysis and Liquidity Provision," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 1043-1071.
    4. Philippe Jorion & William N. Goetzmann, 1999. "Global Stock Markets in the Twentieth Century," Journal of Finance, American Finance Association, vol. 54(3), pages 953-980, June.
    5. Charles J. Corrado & Suk-Hun Lee, 1992. "Filter Rule Tests Of The Economic Significance Of Serial Dependencies In Daily Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 15(4), pages 369-387, December.
    6. Charles J. Corrado & Suk-Hun Lee, 1992. "Filter Rule Tests Of The Economic Significance Of Serial Dependencies In Daily Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 15(4), pages 369-387, December.
    7. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsung-Hsun Lu & Yung-Ming Shiu, 2012. "Tests for Two-Day Candlestick Patterns in the Emerging Equity Market of Taiwan," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(0), pages 41-57, January.
    2. Osama El Ansary & Mona Atuea, 2017. "Testing the Effect of Technical Analysis Strategies on Achieving Abnormal Return: Evidence from Egyptian Stock Market," Accounting and Finance Research, Sciedu Press, vol. 6(2), pages 1-26, May.
    3. Valentina Galvani & Stuart Landon, 2013. "Riding the yield curve: a spanning analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 135-154, January.
    4. Piyapas Tharavanij & Vasan Siraprapasiri & Kittichai Rajchamaha, 2017. "Profitability of Candlestick Charting Patterns in the Stock Exchange of Thailand," SAGE Open, , vol. 7(4), pages 21582440177, October.
    5. William Wai Him Tsang & Terence Tai Leung Chong, 2009. "Profitability of the On-Balance Volume Indicator," Economics Bulletin, AccessEcon, vol. 29(3), pages 2424-2431.
    6. Ni, Yensen & Day, Min-Yuh & Huang, Paoyu & Yu, Shang-Ru, 2020. "The profitability of Bollinger Bands: Evidence from the constituent stocks of Taiwan 50," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Kim man Lui & Terence T. L. Chong, 2013. "Do Technical Analysts Outperform Novice Traders: Experimental Evidence," Economics Bulletin, AccessEcon, vol. 33(4), pages 3080-3087.
    8. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    9. Huiwen Wang & Wenyang Huang & Shanshan Wang, 2021. "Forecasting open-high-low-close data contained in candlestick chart," Papers 2104.00581, arXiv.org.
    10. Chen, Kuan-Hau & Su, Xuan-Qi & Lin, Li-Feng & Shih, Yi-Cheng, 2021. "Profitability of moving-average technical analysis over the firm life cycle: Evidence from Taiwan," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    11. Lu, Tsung-Hsun & Chen, Yi-Chi & Hsu, Yu-Chin, 2015. "Trend definition or holding strategy: What determines the profitability of candlestick charting?," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 172-183.
    12. Chen, Shi & Bao, Si & Zhou, Yu, 2016. "The predictive power of Japanese candlestick charting in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 148-165.
    13. Gil Cohen, 2022. "Artificial Intelligence in Trading the Financial Markets," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 101-110.
    14. Lu, Tsung-Hsun, 2014. "The profitability of candlestick charting in the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 65-78.
    15. Detollenaere, Benoit & Mazza, Paolo, 2014. "Do Japanese candlesticks help solve the trader’s dilemma?," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 386-395.
    16. Andreas Hadjixenophontos & Christos Christodoulou-Volos, 2017. "Predictability of Foreign Exchange Rates with the AR(1) Model," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(4), pages 1-3.
    17. Gil Cohen, 2021. "Optimizing candlesticks patterns for Bitcoin's trading systems," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1155-1167, October.
    18. Tsung‐Hsun Lu & Yung‐Ming Shiu & Tsung‐Chi Liu, 2012. "Profitable candlestick trading strategies—The evidence from a new perspective," Review of Financial Economics, John Wiley & Sons, vol. 21(2), pages 63-68, April.
    19. Gil Cohen, 2020. "Best Candlesticks Pattern to Trade Stocks," International Journal of Economics and Financial Issues, Econjournals, vol. 10(2), pages 256-261.
    20. Zhu, Min & Atri, Said & Yegen, Eyub, 2016. "Are candlestick trading strategies effective in certain stocks with distinct features?," Pacific-Basin Finance Journal, Elsevier, vol. 37(C), pages 116-127.
    21. Lu, Tsung-Hsun & Shiu, Yung-Ming & Liu, Tsung-Chi, 2012. "Profitable candlestick trading strategies—The evidence from a new perspective," Review of Financial Economics, Elsevier, vol. 21(2), pages 63-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    2. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    3. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    4. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    5. Friesen, Geoffrey C. & Weller, Paul A. & Dunham, Lee M., 2009. "Price trends and patterns in technical analysis: A theoretical and empirical examination," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1089-1100, June.
    6. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    7. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    8. Marshall, Ben R. & Young, Martin R. & Rose, Lawrence C., 2006. "Candlestick technical trading strategies: Can they create value for investors?," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2303-2323, August.
    9. Chen, Cheng-Wei & Huang, Chin-Sheng & Lai, Hung-Wei, 2009. "The impact of data snooping on the testing of technical analysis: An empirical study of Asian stock markets," Journal of Asian Economics, Elsevier, vol. 20(5), pages 580-591, September.
    10. Taylor, Nick, 2014. "The rise and fall of technical trading rule success," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 286-302.
    11. Xiaoye Jin, 2022. "Evaluating the predictive power of intraday technical trading in China's crude oil market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1416-1432, November.
    12. Gunasekarage, Abeyratna & Power, David M., 2001. "The profitability of moving average trading rules in South Asian stock markets," Emerging Markets Review, Elsevier, vol. 2(1), pages 17-33, March.
    13. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    14. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    15. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    16. Wang, Zi-Mei & Chiao, Chaoshin & Chang, Ya-Ting, 2012. "Technical analyses and order submission behaviors: Evidence from an emerging market," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 109-128.
    17. Emmanuel Acar & Stephen Satchell, 1997. "A theoretical analysis of trading rules: an application to the moving average case with Markovian returns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(3), pages 165-180.
    18. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    19. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    20. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.

    More about this item

    Keywords

    Candlestick; Technical analysis; Japan; Market timing; G12; G14;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:31:y:2008:i:2:p:191-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.