IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v22y2019i3d10.1007_s11147-018-09152-7.html
   My bibliography  Save this article

Empirical performance of reduced-form models for emission permit prices

Author

Listed:
  • Steffen Hitzemann

    (Rutgers Business School)

  • Marliese Uhrig-Homburg

    (Karlsruhe Institute of Technology)

Abstract

The value of emission permits in environmental markets derives from the particular design features of the underlying cap-and-trade system. In this paper, we evaluate a model framework for the price dynamics of emission permits which accounts for these features in a reduced-form way. Based on permit futures and option data from the European Union Emissions Trading System, the world’s largest environmental market, we show that model variants which represent the design of the system most accurately provide the best fit to historical futures prices and achieve the best option pricing performance. Our results suggest that the specific design of cap-and-trade systems directly translates to the dynamic properties of emission permit prices, and that models tailored to environmental markets are the best choice for related pricing and risk management decisions.

Suggested Citation

  • Steffen Hitzemann & Marliese Uhrig-Homburg, 2019. "Empirical performance of reduced-form models for emission permit prices," Review of Derivatives Research, Springer, vol. 22(3), pages 389-418, October.
  • Handle: RePEc:kap:revdev:v:22:y:2019:i:3:d:10.1007_s11147-018-09152-7
    DOI: 10.1007/s11147-018-09152-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-018-09152-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-018-09152-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    2. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    3. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    4. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    5. René Carmona & Juri Hinz, 2011. "Risk-Neutral Models for Emission Allowance Prices and Option Valuation," Management Science, INFORMS, vol. 57(8), pages 1453-1468, August.
    6. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    7. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    8. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    9. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    10. repec:dau:papers:123456789/2267 is not listed on IDEAS
    11. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, June.
    12. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    13. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    14. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    15. Hitzemann, Steffen & Uhrig-Homburg, Marliese, 2018. "Equilibrium Price Dynamics of Emission Permits," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(4), pages 1653-1678, August.
    16. Marc Chesney & Luca Taschini, 2012. "The Endogenous Price Dynamics of Emission Allowances and an Application to CO 2 Option Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(5), pages 447-475, November.
    17. Peter Carr & Liuren Wu, 2010. "Stock Options and Credit Default Swaps: A Joint Framework for Valuation and Estimation," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(4), pages 409-449, Fall.
    18. Rittler, Daniel, 2012. "Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 774-785.
    19. Barr Rosenberg, 1973. "The Analysis of a Cross Section of Time Series by Stochastically Convergent Parameter Regression," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 2, number 4, pages 399-428, National Bureau of Economic Research, Inc.
    20. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    21. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    22. Daskalakis, George & Psychoyios, Dimitris & Markellos, Raphael N., 2009. "Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1230-1241, July.
    23. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
    2. Chia-Lin Chang & Michael McAleer, 2019. "Modeling Latent Carbon Emission Prices for Japan: Theory and Practice," Energies, MDPI, vol. 12(21), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    2. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    3. repec:ipg:wpaper:2014-565 is not listed on IDEAS
    4. Stefan Trück & Rafał Weron, 2016. "Convenience Yields and Risk Premiums in the EU‐ETS—Evidence from the Kyoto Commitment Period," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 587-611, June.
    5. Kim, Jungmu & Park, Yuen Jung & Ryu, Doojin, 2017. "Stochastic volatility of the futures prices of emission allowances: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 714-724.
    6. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    7. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    8. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    9. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    10. Peixuan Yuan, 2022. "Time-Varying Skew in VIX Derivatives Pricing," Management Science, INFORMS, vol. 68(10), pages 7761-7791, October.
    11. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Pricing Performance in Long-Dated Crude Oil Derivatives: Do Models with Stochastic Interest Rates Matter?," Research Paper Series 367, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    13. Julien Chevallier & Stéphane Goutte, 2014. "The goodness-of-fit of the fuel-switching price using the mean-reverting Lévy jump process," Working Papers 2014-285, Department of Research, Ipag Business School.
    14. Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
    15. Sharon S. Yang & Jr-Wei Huang & Chuang-Chang Chang, 2016. "Detecting and modelling the jump risk of CO 2 emission allowances and their impact on the valuation of option on futures contracts," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 749-762, May.
    16. Hilliard, Jimmy E. & Hilliard, Jitka, 2019. "A jump-diffusion model for pricing and hedging with margined options: An application to Brent crude oil contracts," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 137-155.
    17. Neumann, Maximilian & Prokopczuk, Marcel & Wese Simen, Chardin, 2016. "Jump and variance risk premia in the S&P 500," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 72-83.
    18. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    19. Carlos Pinho & Mara Madaleno, 2011. "Links between spot and futures allowances: ECX and EEX markets comparison," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(2/3/4), pages 101-131.
    20. Ladokhin, Sergiy & Borovkova, Svetlana, 2021. "Three-factor commodity forward curve model and its joint P and Q dynamics," Energy Economics, Elsevier, vol. 101(C).
    21. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.

    More about this item

    Keywords

    Emission permits; Price dynamics; Option pricing; Carbon derivatives; Environmental finance;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:22:y:2019:i:3:d:10.1007_s11147-018-09152-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.