IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v7y2009i2p181-205.html
   My bibliography  Save this article

A generalized framework for estimating customer lifetime value when customer lifetimes are not observed

Author

Listed:
  • Siddharth Singh

    ()

  • Sharad Borle
  • Dipak Jain

Abstract

No abstract is available for this item.

Suggested Citation

  • Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
  • Handle: RePEc:kap:qmktec:v:7:y:2009:i:2:p:181-205 DOI: 10.1007/s11129-009-9065-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-009-9065-0
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    2. Boatwright, Peter & Borle, Sharad & Kadane, Joseph B., 2003. "A Model of the Joint Distribution of Purchase Quantity and Timing," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 564-572, January.
    3. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, pages 45-65.
    4. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makoto Abe, 2015. "Deriving Customer Lifetime Value from RFM Measures:Insights into Customer Retention and Acquisition," CIRJE F-Series CIRJE-F-962, CIRJE, Faculty of Economics, University of Tokyo.
    2. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2014. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Quantitative Marketing and Economics (QME), Springer, vol. 12(3), pages 305-329, September.
    3. repec:bpj:mcmeap:v:23:y:2017:i:2:p:131-146:n:1 is not listed on IDEAS
    4. Kinshuk Jerath & Peter S. Fader & Bruce G. S. Hardie, 2011. "New Perspectives on Customer "Death" Using a Generalization of the Pareto/NBD Model," Marketing Science, INFORMS, vol. 30(5), pages 866-880, September.
    5. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    6. Tat Y. Chan & Chunhua Wu & Ying Xie, 2011. "Measuring the Lifetime Value of Customers Acquired from Google Search Advertising," Marketing Science, INFORMS, vol. 30(5), pages 837-850, September.
    7. Leslie Hannah & Makoto Kasuya, 2015. "Twentieth Century Enterprise Forms: Japan in Comparative Perspective," CIRJE F-Series CIRJE-F-966, CIRJE, Faculty of Economics, University of Tokyo.
    8. Pablo Marshall, 2015. "A simple heuristic for obtaining pareto/NBD parameter estimates," Marketing Letters, Springer, vol. 26(2), pages 165-173, June.
    9. Albert C. Bemmaor & Nicolas Glady, 2012. "Modeling Purchasing Behavior with Sudden "Death": A Flexible Customer Lifetime Model," Management Science, INFORMS, pages 1012-1021.

    More about this item

    Keywords

    Customer lifetime value; Forecasting; Simulation; Data augmentation; MCMC; C10; C11; C13; C15; C16; M3;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • M3 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:7:y:2009:i:2:p:181-205. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.