IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v32y2015i1p78-93.html
   My bibliography  Save this article

Unveiling the relationship between the transaction timing, spending and dropout behavior of customers

Author

Listed:
  • Glady, Nicolas
  • Lemmens, Aurélie
  • Croux, Christophe

Abstract

The customer lifetime value combines into one construct the transaction timing, spending and dropout processes that characterize the purchase behavior of customers. Recently, the potential relationship between these processes, either at the individual customer level (i.e. intra-customer correlation) or between customers (i.e. inter-customer correlation), has received more attention. In this paper, we propose to jointly unveil the direction and intensity of these correlations using copulas. We investigate the presence of these correlations in four distinct product categories, namely online music albums sales, securities transactions, and utilitarian and hedonic fast-moving consumer good retail sales.

Suggested Citation

  • Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
  • Handle: RePEc:eee:ijrema:v:32:y:2015:i:1:p:78-93
    DOI: 10.1016/j.ijresmar.2014.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811614000809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2014.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Kumar & Rajkumar Venkatesan & Tim Bohling & Denise Beckmann, 2008. "—The Power of CLV: Managing Customer Lifetime Value at IBM," Marketing Science, INFORMS, vol. 27(4), pages 585-599, 07-08.
    2. Gupta, Sunil, 2009. "Customer-Based Valuation," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 169-178.
    3. Baltas, George & Argouslidis, Paraskevas C. & Skarmeas, Dionysis, 2010. "The Role of Customer Factors in Multiple Store Patronage: A Cost–Benefit Approach," Journal of Retailing, Elsevier, vol. 86(1), pages 37-50.
    4. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
    5. Pradeep K. Chintagunta & Junhong Chu & Javier Cebollada, 2012. "Quantifying Transaction Costs in Online/Off-line Grocery Channel Choice," Marketing Science, INFORMS, vol. 31(1), pages 96-114, January.
    6. McAlister, Leigh, 1982. "A Dynamic Attribute Satiation Model of Variety-Seeking Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(2), pages 141-150, September.
    7. Harald J. van Heerde & Peter S. H. Leeflang & Dick R. Wittink, 2004. "Decomposing the Sales Promotion Bump with Store Data," Marketing Science, INFORMS, vol. 23(3), pages 317-334, December.
    8. Jean‐Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative explanations for consumer inertia," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 417-445, September.
    9. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    10. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    11. Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
    12. Krishnamurthi, Lakshman & Mazumdar, Tridib & Raj, S P, 1992. "Asymmetric Response to Price in Consumer Brand Choice and Purchase Quantity Decisions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(3), pages 387-400, December.
    13. David R. Bell & James M. Lattin, 1998. "Shopping Behavior and Consumer Preference for Store Price Format: Why “Large Basket” Shoppers Prefer EDLP," Marketing Science, INFORMS, vol. 17(1), pages 66-88.
    14. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    15. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    16. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    17. Baohong Sun, 2005. "Promotion Effect on Endogenous Consumption," Marketing Science, INFORMS, vol. 24(3), pages 430-443, July.
    18. David A. Schweidel & Peter S. Fader & Eric T. Bradlow, 2008. "A Bivariate Timing Model of Customer Acquisition and Retention," Marketing Science, INFORMS, vol. 27(5), pages 829-843, 09-10.
    19. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    20. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    21. Danaher, Peter J. & Hardie, Bruce G.S., 2005. "Bacon With Your Eggs? Applications of a New Bivariate Beta-Binomial Distribution," The American Statistician, American Statistical Association, vol. 59, pages 282-286, November.
    22. Boatwright, Peter & Borle, Sharad & Kadane, Joseph B., 2003. "A Model of the Joint Distribution of Purchase Quantity and Timing," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 564-572, January.
    23. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    24. Makoto Abe, 2009. "Customer Lifetime Value and RFM Data: Accounting Your Customers: One by One," CIRJE F-Series CIRJE-F-616, CIRJE, Faculty of Economics, University of Tokyo.
    25. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    26. Igal Hendel & Aviv Nevo, 2003. "The Post-Promotion Dip Puzzle: What do the Data Have to Say?," Quantitative Marketing and Economics (QME), Springer, vol. 1(4), pages 409-424, December.
    27. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    28. Lakshman Krishnamurthi & S. P. Raj, 1988. "A Model of Brand Choice and Purchase Quantity Price Sensitivities," Marketing Science, INFORMS, vol. 7(1), pages 1-20.
    29. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    30. Wesley Hartmann, 2006. "Intertemporal effects of consumption and their implications for demand elasticity estimates," Quantitative Marketing and Economics (QME), Springer, vol. 4(4), pages 325-349, December.
    31. Peter J. Danaher, 2007. "Modeling Page Views Across Multiple Websites with an Application to Internet Reach and Frequency Prediction," Marketing Science, INFORMS, vol. 26(3), pages 422-437, 05-06.
    32. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    33. Andrew Ainslie & Peter E. Rossi, 1998. "Similarities in Choice Behavior Across Product Categories," Marketing Science, INFORMS, vol. 17(2), pages 91-106.
    34. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    35. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
    36. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    37. S. Sriram & Pradeep K. Chintagunta & Manoj K. Agarwal, 2010. "Investigating Consumer Purchase Behavior in Related Technology Product Categories," Marketing Science, INFORMS, vol. 29(2), pages 291-314, 03-04.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    2. Patrick Bachmann & Markus Meierer & Jeffrey Näf, 2021. "The Role of Time-Varying Contextual Factors in Latent Attrition Models for Customer Base Analysis," Marketing Science, INFORMS, vol. 40(4), pages 783-809, July.
    3. Kohsuke Matsuoka, 2020. "Exploring the interface between management accounting and marketing: a literature review of customer accounting," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(3), pages 157-208, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    2. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    3. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    4. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    5. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    6. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    7. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    8. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    9. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    10. Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
    11. Patrick Bachmann & Markus Meierer & Jeffrey Näf, 2021. "The Role of Time-Varying Contextual Factors in Latent Attrition Models for Customer Base Analysis," Marketing Science, INFORMS, vol. 40(4), pages 783-809, July.
    12. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    13. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    14. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    15. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    16. Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
    17. Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
    18. Jaiswal, Anand K. & Niraj, Rakesh & Park, Chang Hee & Agarwal, Manoj K., 2018. "The effect of relationship and transactional characteristics on customer retention in emerging online markets," Journal of Business Research, Elsevier, vol. 92(C), pages 25-35.
    19. Rajkumar Venkatesan & Alexander Bleier & Werner Reinartz & Nalini Ravishanker, 2019. "Improving customer profit predictions with customer mindset metrics through multiple overimputation," Journal of the Academy of Marketing Science, Springer, vol. 47(5), pages 771-794, September.
    20. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    21. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:32:y:2015:i:1:p:78-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.