IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v25y2023i1d10.1007_s10109-022-00397-3.html
   My bibliography  Save this article

Estimating dynamic spatial panel data models with endogenous regressors using synthetic instruments

Author

Listed:
  • Bernard Fingleton

    (University of Cambridge)

Abstract

The paper applies synthetic instruments, initially developed for cross-sectional regression, to estimate dynamic spatial panel data models. These have two main advantages. First, instruments correlated with endogenous variables and yet independent of the errors are difficult to find. Not only are synthetic instruments normally exogenous, but they are usually strongly correlated with endogenous variables, and thus help to avoid the problem of weak instruments. Secondly, they help to reduce instrumental variables proliferation, which is a common result of standard methods of avoiding endogeneity bias. As demonstrated by Monte Carlo simulation, instrument proliferation causes bias in the Sargan–Hansen J test statistic, which is an important indicator of instrument validity and hence estimation consistency. It is also associated with a downward bias in parameter standard error estimates. The paper shows the results of applying synthetic instruments across a variety of different specifications and data generating processes, and it illustrates the method with real data leading to more reliable inference of causal impacts on the level of employment across London districts.

Suggested Citation

  • Bernard Fingleton, 2023. "Estimating dynamic spatial panel data models with endogenous regressors using synthetic instruments," Journal of Geographical Systems, Springer, vol. 25(1), pages 121-152, January.
  • Handle: RePEc:kap:jgeosy:v:25:y:2023:i:1:d:10.1007_s10109-022-00397-3
    DOI: 10.1007/s10109-022-00397-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-022-00397-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-022-00397-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Bernard Fingleton & Daniel Olner & Gwilym Pryce, 2020. "Estimating the local employment impacts of immigration: A dynamic spatial panel model," Urban Studies, Urban Studies Journal Limited, vol. 57(13), pages 2646-2662, October.
    3. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    4. Pesaran, M. Hashem, 2015. "Time Series and Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780198759980.
    5. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    6. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    7. Badi H. Baltagi, 2021. "Econometric Analysis of Panel Data," Springer Texts in Business and Economics, Springer, edition 6, number 978-3-030-53953-5, October.
    8. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    9. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    10. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    11. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    12. Barry Boots & Michael Tiefelsdorf, 2000. "Global and local spatial autocorrelation in bounded regular tessellations," Journal of Geographical Systems, Springer, vol. 2(4), pages 319-348, December.
    13. Harry H. Kelejian & Gianfranco Piras, 2018. "Important overlooked IVs in spatial models," Empirical Economics, Springer, vol. 55(1), pages 69-83, August.
    14. Xiaodong Liu & Lung-Fei Lee, 2013. "Two-Stage Least Squares Estimation of Spatial Autoregressive Models with Endogenous Regressors and Many Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 734-753, August.
    15. Bernard Fingleton & Julie Le Gallo, 2008. "Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: Finite sample properties," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 319-339, August.
    16. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    17. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    18. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4.
    19. Stephen R. Bond, 2002. "Dynamic panel data models: a guide to micro data methods and practice," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 141-162, August.
    20. Bowsher, Clive G., 2002. "On testing overidentifying restrictions in dynamic panel data models," Economics Letters, Elsevier, vol. 77(2), pages 211-220, October.
    21. Fei Jin & Lung-fei Lee, 2013. "Generalized Spatial Two Stage Least Squares Estimation of Spatial Autoregressive Models with Autoregressive Disturbances in the Presence of Endogenous Regressors and Many Instruments," Econometrics, MDPI, vol. 1(1), pages 1-44, May.
    22. Stephen Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers 09/02, Institute for Fiscal Studies.
    23. Parent, Olivier & LeSage, James P., 2012. "Spatial dynamic panel data models with random effects," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 727-738.
    24. Daniel A. Griffith, 2000. "A linear regression solution to the spatial autocorrelation problem," Journal of Geographical Systems, Springer, vol. 2(2), pages 141-156, July.
    25. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    26. Jeanty, P. Wilner & Partridge, Mark & Irwin, Elena, 2010. "Estimation of a spatial simultaneous equation model of population migration and housing price dynamics," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 343-352, September.
    27. Liu, Xiaodong & Saraiva, Paulo, 2015. "GMM estimation of SAR models with endogenous regressors," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 68-79.
    28. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    29. Stephen Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers CWP09/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    30. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Jin & Lung‐fei Lee & Kai Yang, 2024. "Best linear and quadratic moments for spatial econometric models with an application to spatial interdependence patterns of employment growth in US counties," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 640-658, June.
    2. Yugang He, 2024. "E-commerce and foreign direct investment: pioneering a new era of trade strategies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    3. Bernard Fingleton, 2024. "A Spatial Econometric Analysis of Productivity Variations Across US Cities," International Regional Science Review, , vol. 47(4), pages 475-508, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fingleton, Bernard & Szumilo, Nikodem, 2019. "Simulating the impact of transport infrastructure investment on wages: A dynamic spatial panel model approach," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 148-164.
    2. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    3. Hujer Reinhard & Rodrigues Paulo J. M. & Wolf Katja, 2008. "Dynamic Panel Data Models with Spatial Correlation," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(5-6), pages 612-629, October.
    4. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    5. Bernard Fingleton, 2022. "Modifying the linear two-step Windmeijer correction for the presence of spatial error dependence," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-18, December.
    6. Bernard Fingleton, 2020. "Exploring Brexit with dynamic spatial panel models: some possible outcomes for employment across the EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 455-491, April.
    7. David Roodman, 2006. "How to Do xtabond2," North American Stata Users' Group Meetings 2006 8, Stata Users Group.
    8. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    9. Martin Andersson & Hans Lööf, 2009. "Learning‐by‐Exporting Revisited: The Role of Intensity and Persistence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(4), pages 893-916, December.
    10. Schneider, Sophie Therese, 2018. "North-South trade agreements and the quality of institutions: Panel data evidence," Hohenheim Discussion Papers in Business, Economics and Social Sciences 27-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    11. Bravo-Ortega, Claudio & García Marín, Álvaro, 2011. "R&D and Productivity: A Two Way Avenue?," World Development, Elsevier, vol. 39(7), pages 1090-1107, July.
    12. Mateo Zokalj, 2016. "The impact of population aging on public finance in the European Union," Financial Theory and Practice, Institute of Public Finance, vol. 40(4), pages 383-412.
    13. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    14. Ismail M. Cole, 2023. "The political economy triangle of government spending, interest‐group influence, and income inequality: Evidence and implications from the US states," Economics and Politics, Wiley Blackwell, vol. 35(3), pages 1122-1176, November.
    15. Bernard Fingleton, 2020. "Italexit, is it another Brexit?," Journal of Geographical Systems, Springer, vol. 22(1), pages 77-104, January.
    16. Che, Yi & Lu, Yi & Tao, Zhigang & Wang, Peng, 2013. "The impact of income on democracy revisited," Journal of Comparative Economics, Elsevier, vol. 41(1), pages 159-169.
    17. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    18. Seidu, Ayuba & Onel, Gulcan & Moss, Charles Britt, 2018. "Impact of International Remittance on Out-Farm Labor Migration in Developing Countries: A Dynamic Panel Data Analysis," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266531, Southern Agricultural Economics Association.
    19. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    20. Stephen O'Neill & Kevin Hanrahan, 2016. "The capitalization of coupled and decoupled CAP payments into land rental rates," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 285-294, May.

    More about this item

    Keywords

    Dynamic spatial panel data models; Synthetic instruments; Sargan–Hansen J test; Monte Carlo simulation; Inference; Migration; Employment;
    All these keywords.

    JEL classification:

    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:25:y:2023:i:1:d:10.1007_s10109-022-00397-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.