IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v14y2012i4p437-461.html
   My bibliography  Save this article

P-hub protection models for survivable hub network design

Author

Listed:
  • Hyun Kim

Abstract

The design of survivable networks has been a significant issue in network-based infrastructure in transportation, electric power systems, and telecommunications. In telecommunications networks, hubs and backbones are the most critical assets to be protected from any network failure because many network flows use these facilities, resulting in an intensive concentration of flows at these facilities. This paper addresses a series of new hub and spoke network models as survivable network designs, which are termed p-hub protection models (PHPRO). The PHPRO aim to build networks that maximize the total potential interacting traffic over a set of origin–destination nodes based on different routing assumptions, including multiple assignments and back-up hub routes with distance restrictions. Empirical analyses are presented using telecommunication networks in the United States, and the vulnerabilities of networks based on possible disruption scenarios are examined. The results reveal that PROBA, the model with a back-up routing scheme, considerably enhances the network resilience and even the network performance, indicating that the model is a candidate for a strong survivable hub network design. An extension, PROBA-D, also shows that applying a distance restriction can be strategically used for designing back-up hub routes if a network can trade off between network performance and network cost, which results from the reduced length of back-up routings. Copyright Springer-Verlag 2012

Suggested Citation

  • Hyun Kim, 2012. "P-hub protection models for survivable hub network design," Journal of Geographical Systems, Springer, vol. 14(4), pages 437-461, October.
  • Handle: RePEc:kap:jgeosy:v:14:y:2012:i:4:p:437-461
    DOI: 10.1007/s10109-011-0157-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-011-0157-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-011-0157-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zook, Matthew, 2000. "Internet metrics: using host and domain counts to map the internet," Telecommunications Policy, Elsevier, vol. 24(6-7), pages 613-620, August.
    2. Michael O. Ball & Andrew Vakhutinsky, 2001. "Fault-Tolerant Virtual Path Layout in ATM Networks," INFORMS Journal on Computing, INFORMS, vol. 13(1), pages 76-94, February.
    3. Hasan Pirkul & Sridhar Narasimhan, 1994. "Primary and Secondary Route Selection in Backbone Computer Networks," INFORMS Journal on Computing, INFORMS, vol. 6(1), pages 50-60, February.
    4. İlker Baybars & Richard H. Edahl, 1988. "A heuristic method for facility planning in telecommunications networks with multiple alternate routes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(4), pages 503-528, August.
    5. Alan Murray & Timothy Matisziw & Tony Grubesic, 2007. "Critical network infrastructure analysis: interdiction and system flow," Journal of Geographical Systems, Springer, vol. 9(2), pages 103-117, June.
    6. Luís Gouveia & Pedro Patrício & Amaro Sousa, 2008. "Hop-Constrained Node Survivable Network Design: An Application to MPLS over WDM," Networks and Spatial Economics, Springer, vol. 8(1), pages 3-21, March.
    7. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    8. Morton E. O’Kelly & Hyun Kim, 2007. "Survivability of Commercial Backbones with Peering: A Case Study of Korean Networks," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 6, pages 107-128, Springer.
    9. Clyde L. Monma & David F. Shallcross, 1989. "Methods for Designing Communications Networks with Certain Two-Connected Survivability Constraints," Operations Research, INFORMS, vol. 37(4), pages 531-541, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting L. Lei, 2019. "Evaluating the Vulnerability of Time-Sensitive Transportation Networks: A Hub Center Interdiction Problem," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    2. Azizi, Nader & Salhi, Said, 2022. "Reliable hub-and-spoke systems with multiple capacity levels and flow dependent discount factor," European Journal of Operational Research, Elsevier, vol. 298(3), pages 834-854.
    3. Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
    4. Hao Shen & Yong Liang & Zuo-Jun Max Shen, 2021. "Reliable Hub Location Model for Air Transportation Networks Under Random Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 388-406, March.
    5. Pouya Barahimi & Hector A. Vergara, 2020. "Reliable p-Hub Network Design under Multiple Disruptions," Networks and Spatial Economics, Springer, vol. 20(1), pages 301-327, March.
    6. Lei, Ting L. & Church, Richard L., 2015. "On the unified dispersion problem: Efficient formulations and exact algorithms," European Journal of Operational Research, Elsevier, vol. 241(3), pages 622-630.
    7. Morton O’Kelly, 2015. "Network Hub Structure and Resilience," Networks and Spatial Economics, Springer, vol. 15(2), pages 235-251, June.
    8. Hyun Kim & Megan S. Ryerson, 2017. "The q-Ad Hoc Hub Location Problem for Multi-modal Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 1015-1041, September.
    9. Mohammadreza Hamidi & Mohammadreza Gholamian & Kamran Shahanaghi, 2014. "Developing prevention reliability in hub location models," Journal of Risk and Reliability, , vol. 228(4), pages 337-346, August.
    10. Ghaffarinasab, Nader & Atayi, Reza, 2018. "An implicit enumeration algorithm for the hub interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 267(1), pages 23-39.
    11. Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Regenerator Location Problem and survivable extensions: A hub covering location perspective," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 32-55.
    12. Hyun Kim & Yena Song, 2018. "An integrated measure of accessibility and reliability of mass transit systems," Transportation, Springer, vol. 45(4), pages 1075-1100, July.
    13. Trung Hieu Tran & Jesse R. O’Hanley & M. Paola Scaparra, 2017. "Reliable Hub Network Design: Formulation and Solution Techniques," Transportation Science, INFORMS, vol. 51(1), pages 358-375, February.
    14. Carman K.M. Lee & Shuzhu Zhang & Kam K.H. Ng, 2019. "Design of An Integration Model for Air Cargo Transportation Network Design and Flight Route Selection," Sustainability, MDPI, vol. 11(19), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
    2. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    3. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    4. Morton O’Kelly, 2015. "Network Hub Structure and Resilience," Networks and Spatial Economics, Springer, vol. 15(2), pages 235-251, June.
    5. Amiri, Ali & Pirkul, Hasan, 1999. "Routing and capacity assignment in backbone communication networks under time varying traffic conditions," European Journal of Operational Research, Elsevier, vol. 117(1), pages 15-29, August.
    6. Ting Lei & Daoqin Tong, 2013. "Hedging against service disruptions: an expected median location problem with site-dependent failure probabilities," Journal of Geographical Systems, Springer, vol. 15(4), pages 491-512, October.
    7. Timothy Matisziw & Alan Murray & Tony Grubesic, 2009. "Exploring the vulnerability of network infrastructure to disruption," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(2), pages 307-321, June.
    8. Timothy Matisziw & Alan Murray & Tony Grubesic, 2010. "Strategic Network Restoration," Networks and Spatial Economics, Springer, vol. 10(3), pages 345-361, September.
    9. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    10. Sara Mattia, 2012. "Solving survivable two-layer network design problems by metric inequalities," Computational Optimization and Applications, Springer, vol. 51(2), pages 809-834, March.
    11. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    12. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    13. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    14. World Bank, 2004. "World Development Indicators 2004," World Bank Publications - Books, The World Bank Group, number 13890, December.
    15. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    16. Gokhan Karakose & Ronald G. McGarvey, 2019. "Optimal Detection of Critical Nodes: Improvements to Model Structure and Performance," Networks and Spatial Economics, Springer, vol. 19(1), pages 1-26, March.
    17. Yogesh Agarwal, 2013. "Design of Survivable Networks Using Three- and Four-Partition Facets," Operations Research, INFORMS, vol. 61(1), pages 199-213, February.
    18. Karakose, Gokhan & McGarvey, Ronald G., 2018. "Capacitated path-aggregation constraint model for arc disruption in networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 225-238.
    19. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    20. Justin Yates & Sujeevraja Sanjeevi, 2012. "Assessing the impact of vulnerability modeling in the protection of critical infrastructure," Journal of Geographical Systems, Springer, vol. 14(4), pages 415-435, October.

    More about this item

    Keywords

    Hub location; Hub network design; Survivability; C60; C61;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:14:y:2012:i:4:p:437-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.