IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v267y2018i1p23-39.html
   My bibliography  Save this article

An implicit enumeration algorithm for the hub interdiction median problem with fortification

Author

Listed:
  • Ghaffarinasab, Nader
  • Atayi, Reza

Abstract

Hubs are intermediate facilities that play a pivotal role in efficient functioning of transportation and telecommunication systems. Like any other service infrastructure, hub facilities can be subject to natural or man-made disruptions after installation. In this paper, we address the problem of optimally allocating protective resources among a set of p existing hub facilities in such a manner that the damage inflicted by an intentional strike against the service system is minimized. Casting the problem as a Stackelberg game, the leader (i.e., the network protector or defender) fortifies q of the p operating hubs in order to minimize the impact of the upcoming strike, whereas the follower (i.e., the attacker) tries to identify and interdict r of the p−q unprotected hubs that their loss would diminish the network performance the most. A bilevel programming formulation is presented to model the problem and using a min-max approach the model is reduced to a single level mixed integer programming (MIP) model. Furthermore, an efficient exact solution algorithm based on implicit enumeration is proposed for solving the problem. Extensive computational experiments show the capability of the proposed algorithm to obtain the optimal solutions in short computational times. Some managerial insights are also derived based on the obtained numerical results.

Suggested Citation

  • Ghaffarinasab, Nader & Atayi, Reza, 2018. "An implicit enumeration algorithm for the hub interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 267(1), pages 23-39.
  • Handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:23-39
    DOI: 10.1016/j.ejor.2017.11.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717310469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.11.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    2. Scaparra, Maria P. & Church, Richard L., 2008. "An exact solution approach for the interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 189(1), pages 76-92, August.
    3. Deniz Aksen & Nuray Piyade & Necati Aras, 2010. "The budget constrained r-interdiction median problem with capacity expansion," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 269-291, September.
    4. Ivan Contreras, 2015. "Hub Location Problems," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 311-344, Springer.
    5. F. Parvaresh & S. Hashemi Golpayegany & S. Moattar Husseini & B. Karimi, 2013. "Solving the p-hub Median Problem Under Intentional Disruptions Using Simulated Annealing," Networks and Spatial Economics, Springer, vol. 13(4), pages 445-470, December.
    6. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    7. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
    8. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    9. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    10. Ernst, Andreas T. & Krishnamoorthy, Mohan, 1998. "Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 100-112, January.
    11. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    12. Maria Paola Scaparra & Richard L. Church, 2015. "Location Problems Under Disaster Events," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 623-642, Springer.
    13. Hyun Kim, 2012. "P-hub protection models for survivable hub network design," Journal of Geographical Systems, Springer, vol. 14(4), pages 437-461, October.
    14. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    15. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Harun, Sarah, 2020. "A stochastic programming model with endogenous and exogenous uncertainty for reliable network design under random disruption," European Journal of Operational Research, Elsevier, vol. 285(2), pages 670-694.
    2. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    3. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    4. Nicolas Fröhlich & Stefan Ruzika, 2022. "Interdicting facilities in tree networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 95-118, April.
    5. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    7. Girish Ch. Dey & Mamata Jenamani, 2019. "Optimizing fortification plan of capacitated facilities with maximum distance limits," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 151-173, March.
    8. Elham Ziar & Mehdi Seifbarghy & Mahdi Bashiri & Benny Tjahjono, 2023. "An efficient environmentally friendly transportation network design via dry ports: a bi-level programming approach," Annals of Operations Research, Springer, vol. 322(2), pages 1143-1166, March.
    9. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    2. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    3. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    4. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    5. Nader Azizi, 2019. "Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods," Annals of Operations Research, Springer, vol. 272(1), pages 159-185, January.
    6. Pouya Barahimi & Hector A. Vergara, 2020. "Reliable p-Hub Network Design under Multiple Disruptions," Networks and Spatial Economics, Springer, vol. 20(1), pages 301-327, March.
    7. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    8. Trung Hieu Tran & Jesse R. O’Hanley & M. Paola Scaparra, 2017. "Reliable Hub Network Design: Formulation and Solution Techniques," Transportation Science, INFORMS, vol. 51(1), pages 358-375, February.
    9. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    10. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    11. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2019. "Improved polyhedral descriptions and exact procedures for a broad class of uncapacitated p-hub median problems," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 38-63.
    12. Nazmi Sener & Orhan Feyzioglu, 2023. "Multiple allocation hub covering flow problem under uncertainty," Annals of Operations Research, Springer, vol. 320(2), pages 975-997, January.
    13. Hyun Kim & Megan S. Ryerson, 2017. "The q-Ad Hoc Hub Location Problem for Multi-modal Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 1015-1041, September.
    14. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2016. "Hub Interdiction & Hub Protection problems: Model formulations & Exact Solution methods. (Revised)," IIMA Working Papers WP2016-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    15. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    16. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    17. F. Parvaresh & S. Hashemi Golpayegany & S. Moattar Husseini & B. Karimi, 2013. "Solving the p-hub Median Problem Under Intentional Disruptions Using Simulated Annealing," Networks and Spatial Economics, Springer, vol. 13(4), pages 445-470, December.
    18. Milad Keshvari Fard & Laurent Alfandari, 2018. "Trade-offs between the Stepwise Cost Function and its Linear Approximation for the Modular Hub Location Problem," Working Papers hal-01821280, HAL.
    19. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2016. "Hub network design problems with profits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 40-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:23-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.