IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v27y2013i1p65-99.html
   My bibliography  Save this article

Portfolio allocation using multivariate variance gamma models

Author

Listed:
  • Asmerilda Hitaj

    ()

  • Lorenzo Mercuri

    ()

Abstract

In this paper, we investigate empirically the effect of using higher moments in portfolio allocation when parametric and nonparametric models are used. The nonparametric model considered in this paper is the sample approach; the parametric model is constructed assuming multivariate variance gamma (MVG) joint distribution for asset returns.We consider the MVG models proposed by Madan and Seneta ( 1990 ), Semeraro ( 2008 ) and Wang ( 2009 ). We perform an out-of-sample analysis comparing the optimal portfolios obtained using the MVG models and the sample approach. Our portfolio is composed of 18 assets selected from the S&P500 Index and the dataset consists of daily returns observed from 01/04/2000 to 01/09/2011. Copyright Swiss Society for Financial Market Research 2013

Suggested Citation

  • Asmerilda Hitaj & Lorenzo Mercuri, 2013. "Portfolio allocation using multivariate variance gamma models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 27(1), pages 65-99, March.
  • Handle: RePEc:kap:fmktpm:v:27:y:2013:i:1:p:65-99
    DOI: 10.1007/s11408-012-0202-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11408-012-0202-5
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    2. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    3. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55.
    4. Beatriz Mendes & Mariângela Semeraro & Ricardo Leal, 2010. "Pair-copulas modeling in finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 24(2), pages 193-213, June.
    5. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Patrizia Semeraro, 2006. "A Multivariate Time-Changed Lévy Model for Financial Applications," ICER Working Papers - Applied Mathematics Series 10-2006, ICER - International Centre for Economic Research.
    8. Loregian, Angela & Mercuri, Lorenzo & Rroji, Edit, 2012. "Approximation of the variance gamma model with a finite mixture of normals," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 217-224.
    9. Jean, William H., 1973. "More on Multidimensional Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(03), pages 475-490, June.
    10. Loistl, Otto, 1976. "The Erroneous Approximation of Expected Utility by Means of a Taylor's Series Expansion: Analytic and Computational Results," American Economic Review, American Economic Association, vol. 66(5), pages 904-910, December.
    11. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    12. Rubinstein, Mark E., 1973. "The Fundamental Theorem of Parameter-Preference Security Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(01), pages 61-69, January.
    13. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Multi-moment Asset Allocation and Pricing Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308990, HAL.
    14. Stefan Kassberger & Rüdiger Kiesel, 2006. "A fully parametric approach to return modelling and risk management of hedge funds," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 472-491, December.
    15. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asmerilda Hitaj & Friedrich Hubalek & Lorenzo Mercuri & Edit Rroji, 2016. "Multivariate Mixed Tempered Stable Distribution," Papers 1609.00926, arXiv.org, revised Oct 2016.
    2. Hitaj, Asmerilda & Mercuri, Lorenzo & Rroji, Edit, 2015. "Portfolio selection with independent component analysis," Finance Research Letters, Elsevier, vol. 15(C), pages 146-159.
    3. Hitaj, Asmerilda & Zambruno, Giovanni, 2016. "Are Smart Beta strategies suitable for hedge fund portfolios?," Review of Financial Economics, Elsevier, vol. 29(C), pages 37-51.
    4. Lorenzo Mercuri & Edit Rroji, 2014. "Parametric Risk Parity," Papers 1409.7933, arXiv.org.

    More about this item

    Keywords

    Portfolio selection; Multivariate variance gamma model; Higher-order moments; C51; G11;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:27:y:2013:i:1:p:65-99. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.