IDEAS home Printed from https://ideas.repec.org/p/icr/wpmath/10-2006.html
   My bibliography  Save this paper

A Multivariate Time-Changed Lévy Model for Financial Applications

Author

Listed:
  • Patrizia Semeraro

    ()

Abstract

The purpose of this paper is to define a bivariate L´evy process by subordination of a Brownian motion. In particular we investigate a generalization of the bivariate Variance Gamma process proposed in Luciano and Schoutens [8] as a price process. Our main contribution here is to introduce a bivariate subordinator with correlated Gamma margins. We characterize the process and study its dependence structure. At the end wealso propose an exponential Lévy price model based on our process.

Suggested Citation

  • Patrizia Semeraro, 2006. "A Multivariate Time-Changed Lévy Model for Financial Applications," ICER Working Papers - Applied Mathematics Series 10-2006, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:10-2006
    as

    Download full text from publisher

    File URL: http://www.biblioecon.unito.it/biblioservizi/RePEc/icr/wp2006/ICERwp10-06.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    2. Andreas W. Rathgeber & Johannes Stadler & Stefan Stöckl, 2016. "Modeling share returns - an empirical study on the Variance Gamma model," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 40(4), pages 653-682, October.
    3. Asmerilda Hitaj & Lorenzo Mercuri, 2013. "Portfolio allocation using multivariate variance gamma models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 27(1), pages 65-99, March.
    4. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
    5. Marina Marena & Andrea Romeo & Patrizia Semeraro, 2015. "Pricing multivariate barrier reverse convertibles with factor-based subordinators," Carlo Alberto Notebooks 439, Collegio Carlo Alberto.
    6. Petar Jevtic & Patrizia Semeraro, 2014. "A class of multivariate marked Poisson processes to model asset returns," Carlo Alberto Notebooks 351, Collegio Carlo Alberto.
    7. Elisa Luciano & Patrizia Semeraro, 2007. "Generalized Normal Mean Variance Mixture and Subordinated Brownian Motion," ICER Working Papers - Applied Mathematics Series 42-2007, ICER - International Centre for Economic Research.
    8. Asmerilda Hitaj & Friedrich Hubalek & Lorenzo Mercuri & Edit Rroji, 2016. "Multivariate Mixed Tempered Stable Distribution," Papers 1609.00926, arXiv.org, revised Oct 2016.
    9. repec:bpj:strimo:v:35:y:2018:i:1-2:p:23-33:n:2 is not listed on IDEAS
    10. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
    11. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2018. "Calibration for Weak Variance-Alpha-Gamma Processes," Papers 1801.08852, arXiv.org, revised Apr 2018.
    12. Karl Friedrich Hofmann & Thorsten Schulz, 2016. "A General Ornstein–Uhlenbeck Stochastic Volatility Model With Lévy Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:10-2006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino). General contact details of provider: http://edirc.repec.org/data/icerrit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.