IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i4d10.1007_s10614-018-9837-2.html
   My bibliography  Save this article

Abandonment Decision-Making of Overseas Oilfield Project Coping with Low Oil Price

Author

Listed:
  • Hui-Ling Zhou

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management
    Sustainable Development Research Institute for Economy and Society of Beijing)

  • Bao-Jun Tang

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management
    Sustainable Development Research Institute for Economy and Society of Beijing)

  • Hong Cao

    (Beijing Institute of Technology
    Capital University of Economics & Business)

Abstract

The abandonment option of an operating oil project refers to the right to shut down or transfer the project. As a kind of American real option, it minimizes the impact of bad operating conditions, thus increases the initial project value. Meanwhile, as a put option, it maximizes the management flexibility in unfavorable environment, especially in the current low oil prices. This article uses the trinomial tree, rather than the binomial tree widely practiced in finance, to value the option. Its lattice structure shows flexibility and intelligibility, and improves computational efficiency and accuracy. In this article, the abandonment option value incorporates uncertainties of oil price, exchange rate, political environment and taxation policy. The risk-neutral based decisions are relatively objective for oil companies. The case study indicates that the relative relationship between the abandonment option value and the project scrap value or selling price is the key to the decision-making results. A novel conclusion from the risk-neutral prospective is that, the project is more likely to be sold at higher risk scenario or with higher profit requirement. Moreover, export duty and mineral extraction tax have a greater impact on the abandonment timing than corporate income tax. This decision-making model can be introduced with modifications to other investments with increasing risk of falling asset price.

Suggested Citation

  • Hui-Ling Zhou & Bao-Jun Tang & Hong Cao, 2020. "Abandonment Decision-Making of Overseas Oilfield Project Coping with Low Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1171-1184, April.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9837-2
    DOI: 10.1007/s10614-018-9837-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-018-9837-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-018-9837-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    2. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    3. Tang, Bao-Jun & Zhou, Hui-Ling & Chen, Hao & Wang, Kai & Cao, Hong, 2017. "Investment opportunity in China's overseas oil project: An empirical analysis based on real option approach," Energy Policy, Elsevier, vol. 105(C), pages 17-26.
    4. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    5. Myers, Stewart C. & Majd, Saman., 1983. "Calculating abandonment value using option pricing theory," Working papers 1462-83., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    7. Monjas-Barroso, Manuel & Balibrea-Iniesta, José, 2013. "Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options," Energy Policy, Elsevier, vol. 55(C), pages 335-352.
    8. Zhi-Fu Mi & Yi-Ming Wei & Bao-Jun Tang & Rong-Gang Cong & Hao Yu & Hong Cao & Dabo Guan, 2017. "Risk assessment of oil price from static and dynamic modelling approaches," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 929-939, February.
    9. Olsen, Trond E. & Stensland, Gunnar, 1988. "Optimal shutdown decisions in resource extraction," Economics Letters, Elsevier, vol. 26(3), pages 215-218.
    10. He, Ling-Yun & Chen, Yu, 2013. "Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China," Transport Policy, Elsevier, vol. 25(C), pages 30-40.
    11. James E. Smith & Kevin F. McCardle, 1998. "Valuing Oil Properties: Integrating Option Pricing and Decision Analysis Approaches," Operations Research, INFORMS, vol. 46(2), pages 198-217, April.
    12. HE, Ling-Yun & QIU, Lu-Yi, 2016. "Transport demand, harmful emissions, environment and health co-benefits in China," Energy Policy, Elsevier, vol. 97(C), pages 267-275.
    13. Clarke, Harry R. & Reed, William J., 1990. "Oil-well valuation and abandonment with price and extraction rate uncertain," Resources and Energy, Elsevier, vol. 12(4), pages 361-382, December.
    14. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    15. J. Muñoz & J. Contreras & J. Caamaño & P. Correia, 2011. "A decision-making tool for project investments based on real options: the case of wind power generation," Annals of Operations Research, Springer, vol. 186(1), pages 465-490, June.
    16. He, Ling-Yun & Fan, Ying & Wei, Yi-Ming, 2009. "Impact of speculator's expectations of returns and time scales of investment on crude oil price behaviors," Energy Economics, Elsevier, vol. 31(1), pages 77-84, January.
    17. Franklin, Sergio Luis & Diallo, Madiagne, 2013. "Real options and cost-based access pricing: Model and methodology," Telecommunications Policy, Elsevier, vol. 37(4), pages 321-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Bao-Jun & Zhou, Hui-Ling & Chen, Hao & Wang, Kai & Cao, Hong, 2017. "Investment opportunity in China's overseas oil project: An empirical analysis based on real option approach," Energy Policy, Elsevier, vol. 105(C), pages 17-26.
    2. Gorupec Natalia & Tiberius Victor & Brehmer Nataliia & Kraus Sascha, 2022. "Tackling uncertain future scenarios with real options: A review and research framework," The Irish Journal of Management, Sciendo, vol. 41(1), pages 69-88, July.
    3. Yu, Shiwei & Li, Zhenxi & Wei, Yi-Ming & Liu, Lancui, 2019. "A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes," Energy, Elsevier, vol. 189(C).
    4. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, August.
    5. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    6. Bai, Yang & Meng, Jie & Meng, Fanyi & Fang, Guochang, 2020. "Stochastic analysis of a shale gas investment strategy for coping with production uncertainties," Energy Policy, Elsevier, vol. 144(C).
    7. Carol Alexander & Xi Chen, 2021. "Model risk in real option valuation," Annals of Operations Research, Springer, vol. 299(1), pages 1025-1056, April.
    8. Didier Nibbering & Coos van Buuren & Wei Wei, 2021. "Real Options Valuation of Wind Energy Based on the Empirical Production Uncertainty," Monash Econometrics and Business Statistics Working Papers 19/21, Monash University, Department of Econometrics and Business Statistics.
    9. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Investment planning under uncertainty and flexibility: the case of a purchasable sales contract," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(1), pages 1-20.
    10. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    11. Lander, Diane M. & Pinches, George E., 1998. "Challenges to the Practical Implementation of Modeling and Valuing Real Options," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 537-567.
    12. Jia-Yue Huang & Yun-Fei Cao & Hui-Ling Zhou & Hong Cao & Bao-Jun Tang & Nan Wang, 2018. "Optimal Investment Timing and Scale Choice of Overseas Oil Projects: A Real Option Approach," Energies, MDPI, vol. 11(11), pages 1-22, October.
    13. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    14. Anastasios Michailidis & Konstadinos Mattas, 2007. "Using Real Options Theory to Irrigation Dam Investment Analysis: An Application of Binomial Option Pricing Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1717-1733, October.
    15. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    16. Sheng-Hau Lin & Chia-Tsong Chen, 2020. "Pricing Rent for Social Housing Under Uncertainty," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 10(4), pages 1-4.
    17. Nunes, Luis Eduardo & Lima, Marcus Vinicius Andrade de & Davison, Matthew & Leite, André Luis da Silva, 2021. "Switch and defer option in renewable energy projects: Evidences from Brazil," Energy, Elsevier, vol. 231(C).
    18. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    19. Tatiana Ponomarenko & Eugene Marin & Sergey Galevskiy, 2022. "Economic Evaluation of Oil and Gas Projects: Justification of Engineering Solutions in the Implementation of Field Development Projects," Energies, MDPI, vol. 15(9), pages 1-22, April.
    20. Hanne Lamberts-Van Assche & Tine Compernolle, 2022. "Using Real Options Thinking to Value Investment Flexibility in Carbon Capture and Utilization Projects: A Review," Sustainability, MDPI, vol. 14(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9837-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.