IDEAS home Printed from https://ideas.repec.org/a/jre/issued/v2n21987p75-83.html
   My bibliography  Save this article

House Prices and a Flood Event: An Empirical Investigation of Market Efficiency

Author

Abstract

In this study, house-price reactions to a first-time disastrous flood are investigated. Conventional wisdom predicted prices would decline and later regain lost value as the market forgot the flood. In fact, sample home prices do not fall immediately after the flood and do not later rise. On the other hand, when flood insurance premiums rise dramatically approximately one year after the flood, these higher rates are capitalized into home values and prices do decline. The findings are consistent with rational and efficient markets.

Suggested Citation

  • Terrance R. Skantz & Thomas H. Strickland, 1987. "House Prices and a Flood Event: An Empirical Investigation of Market Efficiency," Journal of Real Estate Research, American Real Estate Society, vol. 2(2), pages 75-83.
  • Handle: RePEc:jre:issued:v:2:n:2:1987:p:75-83
    as

    Download full text from publisher

    File URL: http://pages.jh.edu/jrer/papers/pdf/past/vol02n02/v02p075.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palmquist, Raymond B., 1982. "Measuring environmental effects on property values without hedonic regressions," Journal of Urban Economics, Elsevier, vol. 11(3), pages 333-347, May.
    2. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    3. George W. Gau, 1985. "Public Information and Abnormal Returns in Real Estate Investment," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 13(1), pages 15-31, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malpezzi, Stephen, 1999. "A Simple Error Correction Model of House Prices," Journal of Housing Economics, Elsevier, vol. 8(1), pages 27-62, March.
    2. Felix Schindler, 2014. "Persistence and Predictability in UK House Price Movements," The Journal of Real Estate Finance and Economics, Springer, vol. 48(1), pages 132-163, January.
    3. Felix Schindler, 2013. "Predictability and Persistence of the Price Movements of the S&P/Case-Shiller House Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(1), pages 44-90, January.
    4. Kyriakou, Maria I. & Babalos, Vassilios & Kiohos, Apostolos & Koulakiotis, Athanasios, 2020. "Feedback trading strategies and long-term volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 181-189.
    5. Gunther Maier & Shanaka Herath, 2009. "Real Estate Market Efficiency: A Survey of Literature," SRE-Disc sre-disc-2009_07, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.
    6. Ghysels, Eric & Plazzi, Alberto & Valkanov, Rossen & Torous, Walter, 2013. "Forecasting Real Estate Prices," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 509-580, Elsevier.
    7. Alan W. Evans, 1995. "The Property Market: Ninety Per Cent Efficient?," Urban Studies, Urban Studies Journal Limited, vol. 32(1), pages 5-29, February.
    8. Esra ALP & Ünal SEVEN, 2019. "Türkiye Konut Piyasasında Etkinlik Analizi," Istanbul Business Research, Istanbul University Business School, vol. 48(1), pages 84-112, May.
    9. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    10. Shazia Ghani, 2011. "A re-visit to Minsky after 2007 financial meltdown," Post-Print halshs-01027435, HAL.
    11. Steininger, Lea & Hesse, Casimir, 2024. "Buying into new ideas: The ECB’s evolving justification of unlimited liquidity," Department of Economics Working Paper Series 357, WU Vienna University of Economics and Business.
    12. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    13. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    14. Andrew Weinbach & Rodney J. Paul, 2009. "National television coverage and the behavioural bias of bettors: the American college football totals market," International Gambling Studies, Taylor & Francis Journals, vol. 9(1), pages 55-66, April.
    15. Plantinga, Andrew J. & Provencher, Bill, 2001. "Internal Consistency In Models Of Optimal Resource Use Under Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20712, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Growitsch Christian & Nepal Rabindra & Stronzik Marcus, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, De Gruyter, vol. 16(1), pages 87-103, February.
    17. Oxelheim, Lars & Rafferty, Michael, 2005. "On the static efficiency of secondary bond markets," Journal of Multinational Financial Management, Elsevier, vol. 15(2), pages 117-135, April.
    18. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    19. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    20. Gaio, Luiz Eduardo & Stefanelli, Nelson Oliveira & Pimenta, Tabajara & Bonacim, Carlos Alberto Grespan & Gatsios, Rafael Confetti, 2022. "The impact of the Russia-Ukraine conflict on market efficiency: Evidence for the developed stock market," Finance Research Letters, Elsevier, vol. 50(C).

    More about this item

    JEL classification:

    • L85 - Industrial Organization - - Industry Studies: Services - - - Real Estate Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jre:issued:v:2:n:2:1987:p:75-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: JRER Graduate Assistant/Webmaster (email available below). General contact details of provider: http://www.aresnet.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.