IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2015-101-3.html

Enhancing Agent-Based Models with Discrete Choice Experiments

Author

Abstract

Agent-based modeling is a promising method to investigate market dynamics, as it allows modeling the behavior of all market participants individually. Integrating empirical data in the agents’ decision model can improve the validity of agent-based models (ABMs). We present an approach of using discrete choice experiments (DCEs) to enhance the empirical foundation of ABMs. The DCE method is based on random utility theory and therefore has the potential to enhance the ABM approach with a well-established economic theory. Our combined approach is applied to a case study of a roundwood market in Switzerland. We conducted DCEs with roundwood suppliers to quantitatively characterize the agents’ decision model. We evaluate our approach using a fitness measure and compare two DCE evaluation methods, latent class analysis and hierarchical Bayes. Additionally, we analyze the influence of the error term of the utility function on the simulation results and present a way to estimate its probability distribution.

Suggested Citation

  • Stefan Holm & Renato Lemm & Oliver Thees & Lorenz M. Hilty, 2016. "Enhancing Agent-Based Models with Discrete Choice Experiments," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(3), pages 1-3.
  • Handle: RePEc:jas:jasssj:2015-101-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/19/3/3/3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faical Akaichi & Rodolfo M. Nayga & José M. Gil, 2013. "Are Results from Non-hypothetical Choice-based Conjoint Analyses and Non-hypothetical Recoded-ranking Conjoint Analyses Similar?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(4), pages 949-963.
    2. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
    3. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khanna, Madhu, 2021. "Digital Transformation for a Sustainable Agriculture: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 315052, International Association of Agricultural Economists.
    2. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    3. Khanna, Madhu & Atallah, Shadi & Kar, Saurajyoti & Sharma, Bijay & Wu, Linghui & Yu, Chengzheng, 2021. "Digital Transformation for a Sustainable Agriculture in the US: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 313799, International Association of Agricultural Economists.
    4. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    5. repec:plo:pone00:0190605 is not listed on IDEAS
    6. Holm, Stefan & Thees, Oliver & Lemm, Renato & Olschewski, Roland & Hilty, Lorenz M., 2018. "An agent-based model of wood markets: Scenario analysis," Forest Policy and Economics, Elsevier, vol. 95(C), pages 26-36.
    7. Chappin, Emile J.L. & Schleich, Joachim & Guetlein, Marie-Charlotte & Faure, Corinne & Bouwmans, Ivo, 2022. "Linking of a multi-country discrete choice experiment and an agent-based model to simulate the diffusion of smart thermostats," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    8. Trinh, Tra Thi & Munro, Alistair, 2023. "Integrating a choice experiment into an agent-based model to simulate climate-change induced migration: The case of the Mekong River Delta, Vietnam," Journal of choice modelling, Elsevier, vol. 48(C).
    9. Chang, Shuang & Yang, Wei & Deguchi, Hiroshi, 2020. "Care providers, access to care, and the Long-term Care Nursing Insurance in China: An agent-based simulation," Social Science & Medicine, Elsevier, vol. 244(C).
    10. Ahmed Laatabi & Nicolas Marilleau & Tri Nguyen-Huu & Hassan Hbid & Mohamed Ait Babram, 2018. "ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-9.
    11. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    12. Callum Rhys Tilbury, 2022. "Reinforcement Learning for Economic Policy: A New Frontier?," Papers 2206.08781, arXiv.org, revised Feb 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    2. Theo Arentze & Tao Feng & Harry Timmermans & Jops Robroeks, 2012. "Context-dependent influence of road attributes and pricing policies on route choice behavior of truck drivers: results of a conjoint choice experiment," Transportation, Springer, vol. 39(6), pages 1173-1188, November.
    3. Felipe Miranda & Juan Carlos Muñoz & Juan de Dios Ortúzar, 2008. "Identifying Transit Driver Preferences for Work Shift Structures: An Econometric Analysis," Transportation Science, INFORMS, vol. 42(1), pages 70-86, February.
    4. Shr, Yau-Huo (Jimmy) & Zhang, Wendong, 2024. "Omitted downstream attributes and the benefits of nutrient reductions: Implications for choice experiments," Ecological Economics, Elsevier, vol. 222(C).
    5. Wallentin, Gudrun, 2017. "Spatial simulation: A spatial perspective on individual-based ecology—a review," Ecological Modelling, Elsevier, vol. 350(C), pages 30-41.
    6. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    7. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    8. Westervelt, James D. & Sperry, Jinelle H. & Burton, Jennifer L. & Palis, John G., 2013. "Modeling response of frosted flatwoods salamander populations to historic and predicted climate variables," Ecological Modelling, Elsevier, vol. 268(C), pages 18-24.
    9. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    10. Otieno, David & Ogutu, Sylvester, 2015. "Consumer willingness to pay for animal welfare attributes in a developing country context: The case of chicken in Nairobi, Kenya," 2015 Conference, August 9-14, 2015, Milan, Italy 212602, International Association of Agricultural Economists.
    11. Mark Wardman & Abigail Bristow, 2008. "Valuations of aircraft noise: experiments in stated preference," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(4), pages 459-480, April.
    12. King, Elizabeth G. & Franz, Trenton E., 2016. "Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland," Ecological Modelling, Elsevier, vol. 329(C), pages 41-63.
    13. An, Wookhyun & Alarcón, Silverio, 2021. "Rural tourism preferences in Spain: Best-worst choices," Annals of Tourism Research, Elsevier, vol. 89(C).
    14. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    15. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    16. Courbaud, B. & Lafond, V. & Lagarrigues, G. & Vieilledent, G. & Cordonnier, T. & Jabot, F. & de Coligny, F., 2015. "Applying ecological model evaludation: Lessons learned with the forest dynamics model Samsara2," Ecological Modelling, Elsevier, vol. 314(C), pages 1-14.
    17. Rolfe, John & Bennett, Jeff, 2009. "The impact of offering two versus three alternatives in choice modelling experiments," Ecological Economics, Elsevier, vol. 68(4), pages 1140-1148, February.
    18. Susaeta, Andres & Lal, Pankaj & Alavalapati, Janaki & Mercer, Evan, 2011. "Random preferences towards bioenergy environmental externalities: A case study of woody biomass based electricity in the Southern United States," Energy Economics, Elsevier, vol. 33(6), pages 1111-1118.
    19. Yang, Jui-Chen & Johnson, F. Reed & Kilambi, Vikram & Mohamed, Ateesha F., 2015. "Sample size and utility-difference precision in discrete-choice experiments: A meta-simulation approach," Journal of choice modelling, Elsevier, vol. 16(C), pages 50-57.
    20. Tom Brughmans & Jeroen Poblome, 2016. "MERCURY: an Agent-Based Model of Tableware Trade in the Roman East," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-3.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2015-101-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.