IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland

Listed author(s):
  • King, Elizabeth G.
  • Franz, Trenton E.
Registered author(s):

    Drylands support pastoralist social–ecological systems around the world. Ecological function in these water-limited environments frequently depends on tightly coupled, nonlinear interactions between water, soil, vegetation, and herbivores. Numerous complexity-based approaches have modeled localized ecohydrological feedbacks to yield insights into dryland landscape organization and emergent dynamics. The relevance of these models to management and sustainability continues to increase as researchers incorporate ecological processes at multiple scales and social–ecological variables like herding practices. However, many processes vary in their importance depending on ecological context, so there is a continuing need to construct models tailored to different contexts. We developed a model for semi-arid rangelands that experience highly variable rainfall, substantial Hortonian runoff during rain events, patchy vegetation structure, and grazing-influenced patch transitions. The model couples an existing, mechanistic cellular automata model of hillslope water balance with a dynamic vegetation model in which probabilistic transitions between bare, annual grass, perennial grass patches depend on soil moisture and grazing intensity. The model was parameterized based on a field site in Kenya, from which we had empirical hydrological measurements and several years of patch-to-hillslope scale measurements of vegetation structure. The model domain is a 100×100 grid of 2×2m cells, it simulates seasonal cycles of growing seasons followed by dry seasons, and it computes daily soil moisture based on stochastic rainfall forcings. Patch type transitions can occur twice during each seasonal cycle: at the end of the growing season, with probabilities based on average growing-season soil moisture availability; and at the end of the dry season, with probabilities based on grazing intensity and antecedent growing-season soil moisture. By parameterizing grazing intensity as a per-patch impact, it can be interpreted as the degree of forage depletion at which a herder decides to leave the area. We conducted a series of simulation experiments, principally altering runoff channelization and grazing intensity. The model generated plausible vegetation dynamics across the range of grazing intensities simulated. Vegetation cover fluctuated seasonally, but never collapsed completely, even at the highest grazing intensity. At low to intermediate grazing, we observed multi-decadal switches in fractional perennial cover, triggered by periods of below- or above-average rainfall. At low to intermediate grazing intensities, we noted emergent spatial patterning in the form of a step-like increase in vegetation density in the lower half of the domain. With a vegetation patch transitions governed by mechanistic water balance dynamics as well as grazing intensities that represent herder decision-making, the model holds great potential for further explorations of how land use, climate, and spatial heterogeneity affect the functioning of a dryland pastoralist social–ecological system.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016300485
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Ecological Modelling.

    Volume (Year): 329 (2016)
    Issue (Month): C ()
    Pages: 41-63

    as
    in new window

    Handle: RePEc:eee:ecomod:v:329:y:2016:i:c:p:41-63
    DOI: 10.1016/j.ecolmodel.2016.02.019
    Contact details of provider: Web page: http://www.journals.elsevier.com/ecological-modelling

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:329:y:2016:i:c:p:41-63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.