IDEAS home Printed from
   My bibliography  Save this article

Pattern-formation approach to modelling spatially extended ecosystems


  • Meron, Ehud


Self-organization processes leading to pattern formation phenomena are ubiquitous in nature. Intensive theoretical and experimental research efforts during the past few decades have resulted in a mathematical theory of pattern formation whose predictions are well confirmed by controlled laboratory experiments. There is an increasing observational evidence that pattern formation plays a significant role in shaping dryland landscapes. Supporting these observations are studies of continuum vegetation models that have reproduced many of the observed patterns. Such continuum models consist of partial differential equations and lend themselves to the powerful methods of pattern formation theory. Indeed, vegetation pattern formation has been identified with mathematical instabilities of uniform vegetation states, occurring at threshold degrees of aridity. This paper describes applications of this modelling approach to problems in landscape, community, ecosystem and restoration ecology, highlighting new open questions and research directions that are motivated by pattern formation theory. Three added values of this approach are emphasized: (i) the approach reveals universal nonlinear elements for which a great deal of knowledge is already available, (ii) it captures important aspects of ecosystem complexity, and (iii) it provides an integrative framework for studying problems in spatial ecology.

Suggested Citation

  • Meron, Ehud, 2012. "Pattern-formation approach to modelling spatially extended ecosystems," Ecological Modelling, Elsevier, vol. 234(C), pages 70-82.
  • Handle: RePEc:eee:ecomod:v:234:y:2012:i:c:p:70-82
    DOI: 10.1016/j.ecolmodel.2011.05.035

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. King, Elizabeth G. & Franz, Trenton E., 2016. "Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland," Ecological Modelling, Elsevier, vol. 329(C), pages 41-63.
    2. Oborny, B. & Mony, C. & Herben, T., 2012. "From virtual plants to real communities: A review of modelling clonal growth," Ecological Modelling, Elsevier, vol. 234(C), pages 3-19.
    3. Haim Weissmann & Rafi Kent & Yaron Michael & Nadav M Shnerb, 2017. "Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:234:y:2012:i:c:p:70-82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.