IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014668.html
   My bibliography  Save this article

Resilience prediction and tipping point control of multilayer ecological networks based on dimensionality reduction method

Author

Listed:
  • Duan, Dongli
  • Zhao, Xingjie
  • Cai, Zhiqiang
  • Wang, Ning

Abstract

The collapse of ecosystems often leads to irreversible and catastrophic outcomes. Analyzing and controlling these collapses are challenging due to the complex nature, high dimensionality, multilayer structure, and dynamic behavior of ecosystems, influenced by factors such as interaction topology. While dimensionality reduction techniques can simplify system dynamics, most existing methods focus on individual interaction, hindering comprehensive analysis of diverse species and interactions in complex ecological networks. This paper presents a framework for a plant–pollinator–parasite multilayer network that incorporates mutualistic and parasitic interactions using diagonal coupling. A downscaling approach is devised to transform the high-dimensional system into a low-dimensional effective system with overall variables and layer structure variables. The simplified model accurately captures the fundamental characteristics and dynamics of the original system. Through this framework, we systematically elucidate the resilience patterns of multilayer networks under coupled interactions and the collapse scenarios of three species types, highlighting hysteresis phenomena, multiple tipping points, and first-order or multistage phase transitions within the system. Additionally, two control strategies are introduced to manage collapse critical points via intra- and inter-layer influence, with a low-dimensional model employed to forecast control outcomes. The study demonstrates that the low-dimensional model and control measures are instrumental in evaluating, foreseeing, and controlling the resilience and collapse tipping points of multilayer ecosystems. This framework is versatile and can be extended to diverse multilayer dynamic networks, exposing the fundamental mechanisms and resilience phenomena of these systems.

Suggested Citation

  • Duan, Dongli & Zhao, Xingjie & Cai, Zhiqiang & Wang, Ning, 2025. "Resilience prediction and tipping point control of multilayer ecological networks based on dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014668
    DOI: 10.1016/j.chaos.2024.115914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    2. Wu, Chengxing & Duan, Dongli, 2024. "Collapse process prediction of mutualistic dynamical networks with k-core and dimension reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    4. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    5. Wang, Xiangrong & Peron, Thomas & Dubbeldam, Johan L.A. & Kéfi, Sonia & Moreno, Yamir, 2023. "Interspecific competition shapes the structural stability of mutualistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Phillip P. A. Staniczenko & Jason C. Kopp & Stefano Allesina, 2013. "The ghost of nestedness in ecological networks," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    7. Sonia Kéfi & Max Rietkerk & Concepción L. Alados & Yolanda Pueyo & Vasilios P. Papanastasis & Ahmed ElAich & Peter C. de Ruiter, 2007. "Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems," Nature, Nature, vol. 449(7159), pages 213-217, September.
    8. Wu, Chengxing & Duan, Dongli & Xiao, Renbin, 2023. "A novel dimension reduction method with information entropy to evaluate network resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
    9. Wang, Yuanshi, 2018. "Global dynamics of a competition–parasitism–mutualism model characterizing plant–pollinator–robber interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 26-41.
    10. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    11. Peter J. Mumby & Alan Hastings & Helen J. Edwards, 2007. "Thresholds and the resilience of Caribbean coral reefs," Nature, Nature, vol. 450(7166), pages 98-101, November.
    12. Ahmadian, Navid & Lim, Gino J. & Cho, Jaeyoung & Bora, Selim, 2020. "A quantitative approach for assessment and improvement of network resilience," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Duan, Dongli & Wu, Chengxing & Si, Shubin, 2022. "Predicting the survivability of invasive species with mutualistic and competing interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    14. Viswanathan, Karthik & Wilson, Ashly & Bhattacharyya, Sirshendu & Hens, Chittaranjan, 2024. "Ecological resilience in a circular world: Mutation and extinction in five-species ecosystems," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    15. Michael M. Danziger & Albert-László Barabási, 2022. "Recovery coupling in multilayer networks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Christopher N. Kaiser-Bunbury & James Mougal & Andrew E. Whittington & Terence Valentin & Ronny Gabriel & Jens M. Olesen & Nico Blüthgen, 2017. "Ecosystem restoration strengthens pollination network resilience and function," Nature, Nature, vol. 542(7640), pages 223-227, February.
    17. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chengxing & Duan, Dongli, 2024. "Collapse process prediction of mutualistic dynamical networks with k-core and dimension reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Wu, Chengxing & Deng, Hongzhong & Tu, Chengyi, 2024. "A general network complexity reduction method for cooperative evolution in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    3. Tu, Chengyi & Luo, Jianhong & Fan, Ying & Pan, Xuwei, 2023. "Dimensionality reduction in stochastic complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Richard L. Gruner & Damien Power, 2023. "Conceptual wanderlust: How to develop creative supply chain theory with analogies," Journal of Supply Chain Management, Institute for Supply Management, vol. 59(4), pages 3-21, October.
    6. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    8. Zhao Li & Ren Zhuoming & Zhao Ziyi & Weng Tongfeng, 2024. "Topological perturbations on resilience of the world trade competition network," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
    9. Ricciardi, Gianmarco & Montagna, Guido & Caldarelli, Guido & Cimini, Giulio, 2023. "Dimensional reduction of solvency contagion dynamics on financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    10. Georg Jäger & Christian Hofer & Marie Kapeller & Manfred Füllsack, 2017. "Hidden early-warning signals in scale-free networks," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
    11. repec:plo:pcbi00:1002360 is not listed on IDEAS
    12. Zhang, Hongxia & Xu, Wei & Han, Ping & Qiao, Yan, 2020. "Stochastic dynamic balance of a bi-stable vegetation model with pulse control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    13. Calsina, Àngel & Cuadrado, Sílvia & Vidiella, Blai & Sardanyés, Josep, 2023. "About ghost transients in spatial continuous media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Naoki Masuda & Kazuyuki Aihara & Neil G. MacLaren, 2024. "Anticipating regime shifts by mixing early warning signals from different nodes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Duan, Dongli & Yan, Qi & Rong, Yisheng & Hou, Gege, 2022. "Predicting the cascading failure of dynamical networks based on a new dimension reduction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    17. Yingqiu Zhu & Ruiyi Wang & Mingfei Feng & Lei Qin & Ben-Chang Shia & Ming-Chih Chen, 2024. "Supply Chain Analysis Based on Community Detection of Multi-Layer Weighted Networks," Mathematics, MDPI, vol. 12(22), pages 1-21, November.
    18. Lingaraj Dhal & Mitthan Lal Kansal, 2024. "Streamflow-based watershed resilience assessment in a tropical savannah region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 4245-4267, February.
    19. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    21. Duan, Wenqi & Madasi, Joseph David & Khurshid, Adnan & Ma, Dan, 2022. "Industrial structure conditions economic resilience," Technological Forecasting and Social Change, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.