IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004805.html
   My bibliography  Save this article

Cascading failure in networks with dynamical behavior against multi-node removal

Author

Listed:
  • Lv, Changchun
  • Yuan, Ziwei
  • Si, Shubin
  • Duan, Dongli
  • Yao, Shirui

Abstract

Complex systems in reality can be characterized as networks on which the diverse dynamical behaviors take place. The cascading failure that may cause the disasters triggered by minor events in these dynamic systems is a critical issue needed to reveal. To this end, we introduce a cascading failure model which considers the activity overload when a fraction of nodes is removed in a random way. The average activity and the giant component are derived to evaluate the performance of the network against the cascading failure. The results show the dynamical behavior is a critical factor on the robustness of networks. We found the different characteristics that the network is more robust with biochemical(ℬ), birth-death (ℬD) and regulatory (ℛ) dynamics as the homogeneity of the network increases, but as the heterogeneity of the network increases, the network with epidemic (ℰ) dynamics is more robust. Remarkably, the dynamics with ℬD and ℛ are more sensitive than the dynamics with ℬ and ℰ to the sensitivity factor ρ. It is helpful for the engineer to develop a more robust network with proper measures, especially with limited resources.

Suggested Citation

  • Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004805
    DOI: 10.1016/j.chaos.2022.112270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Uetz & Loic Giot & Gerard Cagney & Traci A. Mansfield & Richard S. Judson & James R. Knight & Daniel Lockshon & Vaibhav Narayan & Maithreyan Srinivasan & Pascale Pochart & Alia Qureshi-Emili & Y, 2000. "A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae," Nature, Nature, vol. 403(6770), pages 623-627, February.
    2. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    4. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. Hao, Yucheng & Wang, Yanhui & Jia, Limin & He, Zhichao, 2020. "Cascading failures in networks with the harmonic closeness under edge attack strategies," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    7. Wang, Jianwei & Sun, Enhui & Xu, Bo & Li, Peng & Ni, Chengzhang, 2016. "Abnormal cascading failure spreading on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 695-701.
    8. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    9. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    10. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    11. Jonathan E McDunn & Kareem D Husain & Ashoka D Polpitiya & Anton Burykin & Jianhua Ruan & Qing Li & William Schierding & Nan Lin & David Dixon & Weixiong Zhang & Craig M Coopersmith & W Michael Dunne , 2008. "Plasticity of the Systemic Inflammatory Response to Acute Infection during Critical Illness: Development of the Riboleukogram," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-14, February.
    12. Dai, Xiangfeng & Li, Xuelong & Gutiérrez, Ricardo & Guo, Hao & Jia, Danyang & Perc, Matjaž & Manshour, Pouya & Wang, Zhen & Boccaletti, Stefano, 2020. "Explosive synchronization in populations of cooperative and competitive oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    13. Han, Dun & Shao, Qi & Li, Dandan & Sun, Mei, 2020. "How the individuals’ risk aversion affect the epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    14. Li, Jie & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2018. "Cascading crashes induced by the individual heterogeneity in complex networks," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 182-192.
    15. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2003. "Efficiency of scale-free networks: error and attack tolerance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 622-642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Rongrong & Zhang, Kai & Ma, Xuyao & Wang, Yumeng & Li, Linhui, 2023. "Analysis of cascading failures caused by mobile overload attacks in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    2. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Shen, Yi & Yang, Huang & Xie, Yuangcheng & Liu, Yang & Ren, Gang, 2023. "Adaptive robustness optimization against network cascading congestion induced by fluctuant load via a bilateral-adaptive strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Dongli & Yan, Qi & Rong, Yisheng & Hou, Gege, 2022. "Predicting the cascading failure of dynamical networks based on a new dimension reduction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    4. Prasan Ratnayake & Sugandima Weragoda & Janaka Wansapura & Dharshana Kasthurirathna & Mahendra Piraveenan, 2021. "Quantifying the Robustness of Complex Networks with Heterogeneous Nodes," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
    5. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    7. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    8. Matteo Cinelli & Giovanna Ferraro & Antonio Iovanella, 2017. "Resilience of Core-Periphery Networks in the Case of Rich-Club," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    9. Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Edge attack strategies in interdependent scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Marcus Engsig & Alejandro Tejedor & Yamir Moreno & Efi Foufoula-Georgiou & Chaouki Kasmi, 2024. "DomiRank Centrality reveals structural fragility of complex networks via node dominance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    13. Zhao, Jianyu & Wei, Jiang & Yu, Lean & Xi, Xi, 2022. "Robustness of knowledge networks under targeted attacks: Electric vehicle field of China evidence," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 367-382.
    14. Morehead, Raymond & Noore, Afzel, 2007. "Novel hybrid mitigation strategy for improving the resiliency of hierarchical networks subjected to attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 603-612.
    15. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    16. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    17. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    18. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    19. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    20. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.