IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007748.html
   My bibliography  Save this article

Robustness of scale-free networks with dynamical behavior against multi-node perturbation

Author

Listed:
  • Lv, Changchun
  • Yuan, Ziwei
  • Si, Shubin
  • Duan, Dongli

Abstract

An issue which is increasingly attracting attention from scientists to engineers, is the robustness of networks which is the ability against perturbations. It is found that both the network topology and network dynamics affect the robustness of networks. In this article, we present the cascading failure model triggered by perturbing a fraction 1−p of nodes on SF networks with three dynamics: the biochemical(B), epidemic(E) and regulatory(R) dynamics. A mathematical method is developed to calculate the cascading failure size and the giant component to evaluate the robustness when a fraction 1−p of nodes is perturbed on SF dynamical networks. We perform extensive numerical simulations to test and verify this formula and find that the theoretical results are in good agreement with simulations. The results show that the network is more robust as the tolerance coefficient δ increases, and the size of network has little influence on the robustness, especially for B and R. Remarkably, the heterogeneity of networks is positive on the robustness. Moreover, the different characteristics that as the parameter B increases or the parameter R decreases the network with B is more robust, and as the parameter R increases or the parameter B decreases the network with E and R is more robust are found. These findings may be useful for engineers to improve the robustness of the network or design robust networks with dynamics.

Suggested Citation

  • Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007748
    DOI: 10.1016/j.chaos.2021.111420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Jian & Zhou, Tianshou, 2018. "The influence of time delay on epidemic spreading under limited resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 414-423.
    2. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    4. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. Ichinose, Genki & Tsuchiya, Tomohiro & Watanabe, Shunsuke, 2021. "Robustness of football passing networks against continuous node and link removals," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Hao, Yucheng & Wang, Yanhui & Jia, Limin & He, Zhichao, 2020. "Cascading failures in networks with the harmonic closeness under edge attack strategies," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    8. Xu, Feifei & Si, Shubin & Duan, Dongli & Lv, Changchun & Xie, Junlan, 2019. "Dynamical resilience of networks against targeted attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    9. Uzi Harush & Baruch Barzel, 2017. "Dynamic patterns of information flow in complex networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    10. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    11. Baruch Barzel & Yang-Yu Liu & Albert-László Barabási, 2015. "Constructing minimal models for complex system dynamics," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    12. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2003. "Efficiency of scale-free networks: error and attack tolerance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 622-642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyu Nan & Yifan Zhu & Jie Zhang & Tao Wang & Xin Zhou, 2022. "MSGWO-MKL-SVM: A Missing Link Prediction Method for UAV Swarm Network Based on Time Series," Mathematics, MDPI, vol. 10(14), pages 1-29, July.
    2. Wei, Wei & Liu, Yuting & Yang, Weidong, 2023. "PTUM: Efficient shielding of large-scale network through pruned tree-cut mapping," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    3. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    4. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    5. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    6. Prasan Ratnayake & Sugandima Weragoda & Janaka Wansapura & Dharshana Kasthurirathna & Mahendra Piraveenan, 2021. "Quantifying the Robustness of Complex Networks with Heterogeneous Nodes," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
    7. Matteo Cinelli & Giovanna Ferraro & Antonio Iovanella, 2017. "Resilience of Core-Periphery Networks in the Case of Rich-Club," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    8. Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Edge attack strategies in interdependent scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    11. Zhao, Jianyu & Wei, Jiang & Yu, Lean & Xi, Xi, 2022. "Robustness of knowledge networks under targeted attacks: Electric vehicle field of China evidence," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 367-382.
    12. Morehead, Raymond & Noore, Afzel, 2007. "Novel hybrid mitigation strategy for improving the resiliency of hierarchical networks subjected to attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 603-612.
    13. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    14. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    15. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    16. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    17. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    18. Kim, Dong Hwan & Eisenberg, Daniel A. & Chun, Yeong Han & Park, Jeryang, 2017. "Network topology and resilience analysis of South Korean power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 13-24.
    19. Aymeric Vié & Alfredo J. Morales, 2021. "How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1327-1351, April.
    20. Tyra, Adam & Li, Jingtao & Shang, Yilun & Jiang, Shuo & Zhao, Yanjun & Xu, Shouhuai, 2017. "Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 713-727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.