IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004175.html
   My bibliography  Save this article

Dismantling directed networks: A multi-temporal information field approach

Author

Listed:
  • Wu, Min
  • Mou, Jianhong
  • Dai, Bitao
  • Tan, Suoyi
  • Lu, Xin

Abstract

While network robustness is often assessed via structural connectivity, this approach does not fully capture the performance of complex systems, which also depends on information flow among internal components. In this paper, we focus on the robustness of directed networks by proposing a framework to dismantle both their information flow and connectivity. Specifically, we develop a multi-temporal information field model for directed networks based on quantum mechanics, and construct the Directed Node Entanglement (DNE) centrality metric using a generalized network density matrix. We first investigate the impact of time scale on DNE and find that its dismantling performance is optimal at a smaller τ. Consequently, we approximate DNE at these scales using mean-field theory and validate the accuracy of our approximation. Moreover, extensive targeted attack experiments on real-world networks show that DNE effectively disrupts both information flow and connectivity, achieving improvement rates of up to 21.34 % and 40.39 %, respectively. Finally, correlation analyses indicate that DNE accounts for both high outward connectivity and bridging potential, offering a distinct perspective on node importance in directed networks. In summary, our study extends the information field model to directed networks and investigates both their information flow and connectivity, providing valuable insights into network robustness.

Suggested Citation

  • Wu, Min & Mou, Jianhong & Dai, Bitao & Tan, Suoyi & Lu, Xin, 2025. "Dismantling directed networks: A multi-temporal information field approach," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004175
    DOI: 10.1016/j.chaos.2025.116404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    2. Marcus Engsig & Alejandro Tejedor & Yamir Moreno & Efi Foufoula-Georgiou & Chaouki Kasmi, 2024. "DomiRank Centrality reveals structural fragility of complex networks via node dominance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    5. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    6. Yuhai Tu, 2000. "How robust is the Internet?," Nature, Nature, vol. 406(6794), pages 353-354, July.
    7. Uzi Harush & Baruch Barzel, 2017. "Dynamic patterns of information flow in complex networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    8. Flaviano Morone & Hernán A. Makse, 2015. "Correction: Corrigendum: Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 527(7579), pages 544-544, November.
    9. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    10. Marco Grassia & Manlio De Domenico & Giuseppe Mangioni, 2021. "Machine learning dismantling and early-warning signals of disintegration in complex systems," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Jingyi Lin & Yifang Ban, 2013. "Complex Network Topology of Transportation Systems," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 658-685, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    2. Dai, Bitao & Wu, Min & Wang, Longyun & Mou, Jianhong & Zhang, Chaojun & Guo, Shuhui & Tan, Suoyi & Lu, Xin, 2025. "Advancing vulnerability assessment in critical infrastructure systems through higher-order cycles and community structures," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    3. Ma, Meng & Liu, Sanyang & Bai, Yiguang, 2025. "Hypernetwork disintegration with integrated metrics-driven evolutionary algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
    4. Deng, Ye & Wang, Zhigang & Xiao, Yu & Shen, Xiaoda & Kurths, Jürgen & Wu, Jun, 2025. "Spatial network disintegration based on spatial coverage," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Qi, Mingze & Chen, Peng & Liang, Yuan & Li, Xiaohan & Deng, Hongzhong & Duan, Xiaojun, 2025. "Multi-objective disintegration of multilayer networks," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    6. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    8. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    10. Li Zeng & Changjun Fan & Chao Chen, 2023. "Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep Reinforcement Learning Strategy with Structured Reward Shaping," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    11. Wu, Chengxing & Duan, Dongli, 2024. "Collapse process prediction of mutualistic dynamical networks with k-core and dimension reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    12. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    13. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    14. Chang Liu & Fengli Xu & Chen Gao & Zhaocheng Wang & Yong Li & Jianxi Gao, 2024. "Deep learning resilience inference for complex networked systems," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Chen, Aimin & Wang, Pei & Zhou, Tianshou & Tian, Tianhai, 2022. "Balance of positive and negative regulation for trade-off between efficiency and resilience of high-dimensional networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Mitra, Tushar & Hassan, Md. Kamrul, 2022. "A weighted planar stochastic lattice with scale-free, small-world and multifractal properties," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    17. Feng, Zhidan & Song, Huimin & Qi, Xingqin, 2024. "A novel algorithm for the generalized network dismantling problem based on dynamic programming," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Alexandru Topîrceanu, 2022. "Benchmarking Cost-Effective Opinion Injection Strategies in Complex Networks," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    19. Duan, Dongli & Bai, Xue & Rong, Yisheng & Hou, Gege & Hang, Jiale, 2022. "Controlling of nonlinear dynamical networks based on decoupling and re-coupling method," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Jiang, Wenjun & Li, Peiyan & Fan, Tianlong & Li, Ting & Zhang, Chuan-fu & Zhang, Tao & Luo, Zong-fu, 2024. "Scalable rapid framework for evaluating network worst robustness with machine learning," Reliability Engineering and System Safety, Elsevier, vol. 252(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.