IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01916-3.html
   My bibliography  Save this article

Dynamic patterns of information flow in complex networks

Author

Listed:
  • Uzi Harush

    (Bar-Ilan University)

  • Baruch Barzel

    (Bar-Ilan University)

Abstract

Although networks are extensively used to visualize information flow in biological, social and technological systems, translating topology into dynamic flow continues to challenge us, as similar networks exhibit fundamentally different flow patterns, driven by different interaction mechanisms. To uncover a network’s actual flow patterns, here we use a perturbative formalism, analytically tracking the contribution of all nodes/paths to the flow of information, exposing the rules that link structure and dynamic information flow for a broad range of nonlinear systems. We find that the diversity of flow patterns can be mapped into a single universal function, characterizing the interplay between the system’s topology and its dynamics, ultimately allowing us to identify the network’s main arteries of information flow. Counter-intuitively, our formalism predicts a family of frequently encountered dynamics where the flow of information avoids the hubs, favoring the network’s peripheral pathways, a striking disparity between structure and dynamics.

Suggested Citation

  • Uzi Harush & Baruch Barzel, 2017. "Dynamic patterns of information flow in complex networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01916-3
    DOI: 10.1038/s41467-017-01916-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01916-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01916-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Elteren, Casper & Quax, Rick & Sloot, Peter, 2022. "Dynamic importance of network nodes is poorly predicted by static structural features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Jung, Hohyun & Phoa, Frederick Kin Hing, 2021. "On the effects of capability and popularity on network dynamics with applications to YouTube and Twitch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Li, Zhaoqing & Deng, Zhenghong & Han, Zhen & Alfaro-Bittner, Karin & Barzel, Baruch & Boccaletti, Stefano, 2021. "Contagion in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Chen, Aimin & Wang, Pei & Zhou, Tianshou & Tian, Tianhai, 2022. "Balance of positive and negative regulation for trade-off between efficiency and resilience of high-dimensional networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    5. Alexander Rivkind & Hallel Schreier & Naama Brenner & Omri Barak, 2020. "Scale free topology as an effective feedback system," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-24, May.
    6. Duan, Dongli & Bai, Xue & Rong, Yisheng & Hou, Gege & Hang, Jiale, 2022. "Controlling of nonlinear dynamical networks based on decoupling and re-coupling method," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    7. Sarah Gelper & Ralf van der Lans & Gerrit van Bruggen, 2021. "Competition for Attention in Online Social Networks: Implications for Seeding Strategies," Management Science, INFORMS, vol. 67(2), pages 1026-1047, February.
    8. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01916-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.