IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v190y2025ics0960077924013110.html
   My bibliography  Save this article

Impact of Lévy noise on spiral waves in a lattice of Chialvo neuron map

Author

Listed:
  • Kolesnikov, I.D.
  • Bukh, A.V.
  • Muni, S.S.
  • Ram, J.S.

Abstract

We aim to explore the features of destroying the spiral wave regime in a lattice network of Chialvo neurons by applying external noise with different statistical characteristics. Chialvo neurons are represented with a two-dimensional recurrence map. The lattice of neurons under study observed with random initial conditions and with special initial conditions for local and nonlocal coupling. We consider a detailed two-parameter plot in the plane of coupling strength — distribution width of Lévy process which revealed that the existence of spiral waves are dependent on the network and noise parameters. We examine how coupling strength and range parameters influence on the spiral wave dynamics in a coupled lattice system. Increasing the coupling range enlarges the region where spiral waves can exist. Additionally we show that the destruction of spiral waves is achievable with a certain threshold of the distribution width parameter value depending on the noise stability parameter value and the noise asymmetry parameter value. A decrease in the noise stability parameter as well as in the noise asymmetry parameter decreases the threshold value. We show that the influence of Lévy noise on spiral waves in the lattice of Chialvo neurons results in a transition to target waves that are more stable than in the case of transition for random initial conditions to target waves without noise. Finally, we have found that the noise could cause the lattice to switch between various spiral-like regimes as time passes.

Suggested Citation

  • Kolesnikov, I.D. & Bukh, A.V. & Muni, S.S. & Ram, J.S., 2025. "Impact of Lévy noise on spiral waves in a lattice of Chialvo neuron map," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013110
    DOI: 10.1016/j.chaos.2024.115759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924013110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Guoyong & Xu, Lin & Xu, Aiguo & Wang, Guangrui & Yang, Shiping, 2011. "Spiral waves in excitable media due to noise and periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 728-738.
    2. Shepelev, I.A. & Bukh, A.V. & Muni, S.S. & Anishchenko, V.S., 2020. "Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. repec:plo:pcbi00:1004367 is not listed on IDEAS
    4. Korneev, Ivan & Zakharova, Anna & Semenov, Vladimir V., 2024. "Lévy noise-induced coherence resonance: Numerical study versus experiment," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Stankevich, N.V. & Gonchenko, A.S. & Popova, E.S. & Gonchenko, S.V., 2023. "Complex dynamics of the simplest neuron model: Singular chaotic Shilnikov attractor as specific oscillatory neuron activity," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Uzi Harush & Baruch Barzel, 2017. "Dynamic patterns of information flow in complex networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    7. Rupamanjari Majumder & Alok Ranjan Nayak & Rahul Pandit, 2011. "Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-21, April.
    8. Muni, Sishu Shankar & Rajagopal, Karthikeyan & Karthikeyan, Anitha & Arun, Sundaram, 2022. "Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Rory G Townsend & Pulin Gong, 2018. "Detection and analysis of spatiotemporal patterns in brain activity," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. VS, Vismaya & Muni, Sishu Shankar & Panda, Anita Kumari & Mondal, Bapin, 2025. "Degn–Harrison map: Dynamical and network behaviours with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Rybalova, E. & Ryabov, A. & Muni, S. & Strelkova, G., 2024. "Lévy noise-induced coherence resonance in neural maps," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Kuznetsov, A.P. & Sedova, Y.V. & Stankevich, N.V., 2024. "Dynamics of non–identical coupled Chialvo neuron maps," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    4. Muni, Sishu Shankar & Rajagopal, Karthikeyan & Karthikeyan, Anitha & Arun, Sundaram, 2022. "Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Mondal, Argha & Hens, Chittaranjan & Mondal, Arnab & Antonopoulos, Chris G., 2021. "Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Li, Cuicui & Fan, Bixuan & Duan, Zhenglu, 2025. "Coherence resonance in acoustic cavity system with coherent feedback," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    8. Nele Vandersickel & Ivan V Kazbanov & Anita Nuitermans & Louis D Weise & Rahul Pandit & Alexander V Panfilov, 2014. "A Study of Early Afterdepolarizations in a Model for Human Ventricular Tissue," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-19, January.
    9. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Soling Zimik & Nele Vandersickel & Alok Ranjan Nayak & Alexander V Panfilov & Rahul Pandit, 2015. "A Comparative Study of Early Afterdepolarization-Mediated Fibrillation in Two Mathematical Models for Human Ventricular Cells," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    12. Min, Fuhong & Zhu, Jie & Cheng, Yizi & Xu, Yeyin, 2024. "Dynamical analysis of a tabu learning neuron through the discrete implicit mapping method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Sarah Gelper & Ralf van der Lans & Gerrit van Bruggen, 2021. "Competition for Attention in Online Social Networks: Implications for Seeding Strategies," Management Science, INFORMS, vol. 67(2), pages 1026-1047, February.
    15. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Anti-phase relay synchronization of wave structures in a heterogeneous multiplex network of 2D lattices," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Alok Ranjan Nayak & T K Shajahan & A V Panfilov & Rahul Pandit, 2013. "Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-25, September.
    17. H. O. Fatoyinbo & S. S. Muni & A. Abidemi, 2022. "Influence of sodium inward current on the dynamical behaviour of modified Morris-Lecar model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-15, January.
    18. Hu, Xueyan & Ding, Qianming & Wu, Yong & Huang, Weifang & Yang, Lijian & Jia, Ya, 2024. "Dynamical rewiring promotes synchronization in memristive FitzHugh-Nagumo neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    19. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Schülen, Leonhard & Janzen, David A. & Medeiros, Everton S. & Zakharova, Anna, 2021. "Solitary states in multiplex neural networks: Onset and vulnerability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.