Degn–Harrison map: Dynamical and network behaviours with applications in image encryption
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.115987
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2013. "An efficient evolutionary algorithm for the ring star problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 22-33.
- Khaleghi, Leyla & Panahi, Shirin & Chowdhury, Sayantan Nag & Bogomolov, Sergey & Ghosh, Dibakar & Jafari, Sajad, 2019. "Chimera states in a ring of map-based neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Sysoeva, Marina V. & Sysoev, Ilya V. & Prokhorov, Mikhail D. & Ponomarenko, Vladimir I. & Bezruchko, Boris P., 2021. "Reconstruction of coupling structure in network of neuron-like oscillators based on a phase-locked loop," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Wang, Qing Yun & Lu, Qi Shao & Guan Rong Chen,, 2007. "Ordered bursting synchronization and complex wave propagation in a ring neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 869-878.
- Kolesnikov, I.D. & Bukh, A.V. & Muni, S.S. & Ram, J.S., 2025. "Impact of Lévy noise on spiral waves in a lattice of Chialvo neuron map," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
- Andrei Victor Oancea & Ilie Bodale, 2022. "Chaos Synchronization of Two Györgyi–Field Systems for the Belousov–Zhabotinsky Chemical Reaction," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
- Paulo C. Rech, 2017. "Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(12), pages 1-7, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Muni, Sishu Shankar & Rajagopal, Karthikeyan & Karthikeyan, Anitha & Arun, Sundaram, 2022. "Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
- Wang, Haijun & Dong, Guili, 2019. "New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 272-286.
- Gong, Yubing & Xie, Yanhang & Lin, Xiu & Hao, Yinghang & Ma, Xiaoguang, 2010. "Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 96-103.
- Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
- Wang, Jing & Liu, Shenquan & Liu, Xuanliang, 2014. "Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 65-71.
- Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
- Anupam Mukherjee & Partha Sarathi Barma & Joydeep Dutta & Goutam Panigrahi & Samarjit Kar & Manoranjan Maiti, 2022. "A multi-objective antlion optimizer for the ring tree problem with secondary sub-depots," Operational Research, Springer, vol. 22(3), pages 1813-1851, July.
- Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 2021. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 42(3), pages 499-523, October.
- Parastesh, Fatemeh & Azarnoush, Hamed & Jafari, Sajad & Hatef, Boshra & Perc, Matjaž & Repnik, Robert, 2019. "Synchronizability of two neurons with switching in the coupling," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 217-223.
- Wang, Qingyun & Duan, Zhisheng & Feng, Zhaosheng & Chen, Guanrong & Lu, Qishao, 2008. "Synchronization transition in gap-junction-coupled leech neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4404-4410.
- Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2016. "MEALS: A multiobjective evolutionary algorithm with local search for solving the bi-objective ring star problem," European Journal of Operational Research, Elsevier, vol. 250(2), pages 377-388.
- Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Bezruchko, B.P. & Ponomarenko, V.I. & Smirnov, D.A. & Sysoev, I.V. & Prokhorov, M.D., 2021. "Class-oriented techniques for reconstruction of dynamics from time series," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Zheng, Yan Hong & Lu, Qi Shao, 2008. "Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3719-3728.
- Wang, Baoying & Gong, Yubing & Xie, Huijuan & Wang, Qi, 2016. "Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 372-378.
- Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 0. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-25.
- Karimov, Artur & Kopets, Ekaterina & Karimov, Timur & Almjasheva, Oksana & Arlyapov, Viacheslav & Butusov, Denis, 2023. "Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Zandi-Mehran, Nazanin & Panahi, Shirin & Hosseini, Zahra & Hashemi Golpayegani, Seyed Mohammad Reza & Jafari, Sajad, 2020. "One dimensional map-based neuron model: A phase space interpretation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
More about this item
Keywords
Stability triangle; Chimera state; Chaos; Bifurcations; Image encryption; Ring-star network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s096007792401539x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.