IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v374y2007i2p869-878.html
   My bibliography  Save this article

Ordered bursting synchronization and complex wave propagation in a ring neuronal network

Author

Listed:
  • Wang, Qing Yun
  • Lu, Qi Shao
  • Guan Rong Chen,

Abstract

Ordered bursting synchronization and complex propagation are investigated for a ring neuronal network in which each neuron exhibits chaotic bursting behaviour. The neurons become more and more synchronous in chaotic bursting as the synaptic strength is increased. It is shown that excitatory chemical synapses can effectively tame the chaos, and ordered bursting synchronization can be observed as the synaptic strength is further increased. However, synchronization among neurons is weakened as the number of neurons is increased. More importantly, it is shown that ordered bursting synchronization can be turned into spiking synchronization at certain noise intensity. Complex spatio-temporal patterns propagating towards both sides of pacemaker are found in this network before the emergence of spiking synchronization.

Suggested Citation

  • Wang, Qing Yun & Lu, Qi Shao & Guan Rong Chen,, 2007. "Ordered bursting synchronization and complex wave propagation in a ring neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 869-878.
  • Handle: RePEc:eee:phsmap:v:374:y:2007:i:2:p:869-878
    DOI: 10.1016/j.physa.2006.08.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106008338
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.08.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Yubing & Xie, Yanhang & Lin, Xiu & Hao, Yinghang & Ma, Xiaoguang, 2010. "Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 96-103.
    2. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    3. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    4. Parastesh, Fatemeh & Azarnoush, Hamed & Jafari, Sajad & Hatef, Boshra & Perc, Matjaž & Repnik, Robert, 2019. "Synchronizability of two neurons with switching in the coupling," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 217-223.
    5. Wang, Jing & Liu, Shenquan & Liu, Xuanliang, 2014. "Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 65-71.
    6. Wang, Baoying & Gong, Yubing & Xie, Huijuan & Wang, Qi, 2016. "Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 372-378.
    7. Zheng, Yan Hong & Lu, Qi Shao, 2008. "Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3719-3728.
    8. Wang, Qingyun & Duan, Zhisheng & Feng, Zhaosheng & Chen, Guanrong & Lu, Qishao, 2008. "Synchronization transition in gap-junction-coupled leech neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4404-4410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:374:y:2007:i:2:p:869-878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.