IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8186.html
   My bibliography  Save this article

Constructing minimal models for complex system dynamics

Author

Listed:
  • Baruch Barzel

    (Bar-Ilan University)

  • Yang-Yu Liu

    (Brigham and Women’s Hospital, Harvard Medical School
    Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Harvard Medical School)

  • Albert-László Barabási

    (Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Harvard Medical School
    Computer Science and Biology, Northeastern University
    Brigham and Women’s Hospital, Harvard Medical School
    Center for Network Science, Central European University)

Abstract

One of the strengths of statistical physics is the ability to reduce macroscopic observations into microscopic models, offering a mechanistic description of a system’s dynamics. This paradigm, rooted in Boltzmann’s gas theory, has found applications from magnetic phenomena to subcellular processes and epidemic spreading. Yet, each of these advances were the result of decades of meticulous model building and validation, which are impossible to replicate in most complex biological, social or technological systems that lack accurate microscopic models. Here we develop a method to infer the microscopic dynamics of a complex system from observations of its response to external perturbations, allowing us to construct the most general class of nonlinear pairwise dynamics that are guaranteed to recover the observed behaviour. The result, which we test against both numerical and empirical data, is an effective dynamic model that can predict the system’s behaviour and provide crucial insights into its inner workings.

Suggested Citation

  • Baruch Barzel & Yang-Yu Liu & Albert-László Barabási, 2015. "Constructing minimal models for complex system dynamics," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8186
    DOI: 10.1038/ncomms8186
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8186
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
    2. Pang, Shaopeng & Hao, Fei, 2017. "Optimizing controllability of edge dynamics in complex networks by perturbing network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 217-227.
    3. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.