IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5954-d280377.html
   My bibliography  Save this article

A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events

Author

Listed:
  • Carlos Sanz-Lazaro

    (Department of Ecology, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
    Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain)

Abstract

Climate change is modifying disturbance regimes, affecting the severity and occurrence of extreme events. Current experiments investigating extreme events have a large diversity of experimental approaches and key aspects such as the interaction with other disturbances, the timing, and long-term effects are not usually incorporated in a standardized way. This lack of comparability among studies limits advances in this field of research. This study presents a framework that is comprised of two experimental approaches designed to test expected changes on disturbance regime due to climate change. These approaches test the effects of disturbances becoming more clustered and more extreme. They use common descriptor variables regardless of the type of disturbance and ecosystem. This framework is completed with a compilation of procedures that increase the realism of experiments in the aforementioned key aspects. The proposed framework favours comparability among studies and increases our understanding of extreme events. Examples to implement this framework are given using rocky shores as a case study. Far from being perfect, the purpose of this framework is to act as a starting point that triggers the comparability and refinement of these types of experiments needed to advance our understanding of the ecological effects of extreme events.

Suggested Citation

  • Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5954-:d:280377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jason M. Hall-Spencer & Riccardo Rodolfo-Metalpa & Sophie Martin & Emma Ransome & Maoz Fine & Suzanne M. Turner & Sonia J. Rowley & Dario Tedesco & Maria-Cristina Buia, 2008. "Volcanic carbon dioxide vents show ecosystem effects of ocean acidification," Nature, Nature, vol. 454(7200), pages 96-99, July.
    2. R. M. B. Harris & L. J. Beaumont & T. R. Vance & C. R. Tozer & T. A. Remenyi & S. E. Perkins-Kirkpatrick & P. J. Mitchell & A. B. Nicotra & S. McGregor & N. R. Andrew & M. Letnic & M. R. Kearney & T. , 2018. "Biological responses to the press and pulse of climate trends and extreme events," Nature Climate Change, Nature, vol. 8(7), pages 579-587, July.
    3. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    4. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    5. Thomas Wernberg & Dan A. Smale & Fernando Tuya & Mads S. Thomsen & Timothy J. Langlois & Thibaut de Bettignies & Scott Bennett & Cecile S. Rousseaux, 2013. "An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot," Nature Climate Change, Nature, vol. 3(1), pages 78-82, January.
    6. E. M. Wolkovich & B. I. Cook & J. M. Allen & T. M. Crimmins & J. L. Betancourt & S. E. Travers & S. Pau & J. Regetz & T. J. Davies & N. J. B. Kraft & T. R. Ault & K. Bolmgren & S. J. Mazer & G. J. McC, 2012. "Warming experiments underpredict plant phenological responses to climate change," Nature, Nature, vol. 485(7399), pages 494-497, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyue Pi & Yang Yu & Yuqing Zhang & Changchun Xu & Ruide Yu, 2020. "Extreme Temperature Events during 1960–2017 in the Arid Region of Northwest China: Spatiotemporal Dynamics and Associated Large-Scale Atmospheric Circulation," Sustainability, MDPI, vol. 12(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    2. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    3. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    4. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    5. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    6. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    7. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    8. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    9. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    10. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    11. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    12. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    13. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    15. Shana M. Sundstrom & Craig R. Allen & David G. Angeler, 2020. "Scaling and discontinuities in the global economy," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 319-345, April.
    16. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    17. Yan Cheng & Stefan Oehmcke & Martin Brandt & Lisa Rosenthal & Adrian Das & Anton Vrieling & Sassan Saatchi & Fabien Wagner & Maurice Mugabowindekwe & Wim Verbruggen & Claus Beier & Stéphanie Horion, 2024. "Scattered tree death contributes to substantial forest loss in California," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    19. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
    20. Ignacio C. Fernández & David Manuel-Navarrete & Robinson Torres-Salinas, 2016. "Breaking Resilient Patterns of Inequality in Santiago de Chile: Challenges to Navigate towards a More Sustainable City," Sustainability, MDPI, vol. 8(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5954-:d:280377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.