IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43744-8.html
   My bibliography  Save this article

Early warning signals have limited applicability to empirical lake data

Author

Listed:
  • Duncan A. O’Brien

    (University of Bristol)

  • Smita Deb

    (Indian Institute of Technology Ropar)

  • Gideon Gal

    (Israel Oceanographic & Limnological Research)

  • Stephen J. Thackeray

    (UK Centre for Ecology & Hydrology)

  • Partha S. Dutta

    (Indian Institute of Technology Ropar)

  • Shin-ichiro S. Matsuzaki

    (National Institute for Environmental Studies)

  • Linda May

    (Bush Estate, Penicuik)

  • Christopher F. Clements

    (University of Bristol)

Abstract

Research aimed at identifying indicators of persistent abrupt shifts in ecological communities, a.k.a regime shifts, has led to the development of a suite of early warning signals (EWSs). As these often perform inaccurately when applied to real-world observational data, it remains unclear whether critical transitions are the dominant mechanism of regime shifts and, if so, which EWS methods can predict them. Here, using multi-trophic planktonic data on multiple lakes from around the world, we classify both lake dynamics and the reliability of classic and second generation EWSs methods to predict whole-ecosystem change. We find few instances of critical transitions, with different trophic levels often expressing different forms of abrupt change. The ability to predict this change is highly processing dependant, with most indicators not performing better than chance, multivariate EWSs being weakly superior to univariate, and a recent machine learning model performing poorly. Our results suggest that predictive ecology should start to move away from the concept of critical transitions, developing methods suitable for predicting resilience loss not limited to the strict bounds of bifurcation theory.

Suggested Citation

  • Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43744-8
    DOI: 10.1038/s41467-023-43744-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43744-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43744-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zarnowitz, Victor & Ozyildirim, Ataman, 2006. "Time series decomposition and measurement of business cycles, trends and growth cycles," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1717-1739, October.
    2. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    3. John M. Drake & Blaine D. Griffen, 2010. "Early warning signals of extinction in deteriorating environments," Nature, Nature, vol. 467(7314), pages 456-459, September.
    4. Christopher F. Clements & Arpat Ozgul, 2016. "Including trait-based early warning signals helps predict population collapse," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    5. Crépin, Anne-Sophie & Biggs, Reinette & Polasky, Stephen & Troell, Max & de Zeeuw, Aart, 2012. "Regime shifts and management," Ecological Economics, Elsevier, vol. 84(C), pages 15-22.
    6. Christopher F. Clements & Michael A. McCarthy & Julia L. Blanchard, 2019. "Early warning signals of recovery in complex systems," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Gregory S. Cooper & Simon Willcock & John A. Dearing, 2020. "Regime shifts occur disproportionately faster in larger ecosystems," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Masayuki Ushio & Chih-hao Hsieh & Reiji Masuda & Ethan R Deyle & Hao Ye & Chun-Wei Chang & George Sugihara & Michio Kondoh, 2018. "Fluctuating interaction network and time-varying stability of a natural fish community," Nature, Nature, vol. 554(7692), pages 360-363, February.
    9. Thomas A. Davidson & Carl D. Sayer & Erik Jeppesen & Martin Søndergaard & Torben L. Lauridsen & Liselotte S. Johansson & Ambroise Baker & Daniel Graeber, 2023. "Bimodality and alternative equilibria do not help explain long-term patterns in shallow lake chlorophyll-a," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Tom H. Oliver & Nick J. B. Isaac & Tom A. August & Ben A. Woodcock & David B. Roy & James M. Bullock, 2015. "Declining resilience of ecosystem functions under biodiversity loss," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    11. Thomas A. Davidson & Carl D. Sayer & Erik Jeppesen & Martin Søndergaard & Torben L. Lauridsen & Liselotte S. Johansson & Ambroise Baker & Daniel Graeber, 2023. "Author Correction: Bimodality and alternative equilibria do not help explain long-term patterns in shallow lake chlorophyll-a," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    2. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    3. Vasilis Dakos & Stephen R Carpenter & William A Brock & Aaron M Ellison & Vishwesha Guttal & Anthony R Ives & Sonia Kéfi & Valerie Livina & David A Seekell & Egbert H van Nes & Marten Scheffer, 2012. "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-20, July.
    4. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    5. Agnes B. Olin & Ulf Bergström & Örjan Bodin & Göran Sundblad & Britas Klemens Eriksson & Mårten Erlandsson & Ronny Fredriksson & Johan S. Eklöf, 2024. "Predation and spatial connectivity interact to shape ecosystem resilience to an ongoing regime shift," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. William A Brock & Stephen R Carpenter, 2012. "Early Warnings of Regime Shift When the Ecosystem Structure Is Unknown," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    7. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    8. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    9. Michele Baggio, 2016. "Optimal Fishery Management with Regime Shifts: An Assessment of Harvesting Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 465-492, July.
    10. Baggio, Michele & Perrings, Charles, 2015. "Modeling adaptation in multi-state resource systems," Ecological Economics, Elsevier, vol. 116(C), pages 378-386.
    11. Kiran D’Souza & Bogdan I Epureanu & Mercedes Pascual, 2015. "Forecasting Bifurcations from Large Perturbation Recoveries in Feedback Ecosystems," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
    12. Lei Zhao & Mingguo Wang & Zhongyao Liang & Qichao Zhou, 2020. "Identification of Regime Shifts and Their Potential Drivers in the Shallow Eutrophic Lake Yilong, Southwest China," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    13. Strunz, Sebastian, 2014. "The German energy transition as a regime shift," Ecological Economics, Elsevier, vol. 100(C), pages 150-158.
    14. Shana M. Sundstrom & David G. Angeler & Ahjond S. Garmestani & Jorge H. García & Craig R. Allen, 2014. "Transdisciplinary Application of Cross-Scale Resilience," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    15. Pim Heijnen & Lammertjan Dam, 2019. "Catastrophe and Cooperation," Dynamic Games and Applications, Springer, vol. 9(1), pages 122-141, March.
    16. Trisha L Spanbauer & Craig R Allen & David G Angeler & Tarsha Eason & Sherilyn C Fritz & Ahjond S Garmestani & Kirsty L Nash & Jeffery R Stone, 2014. "Prolonged Instability Prior to a Regime Shift," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    17. Zvonko Kostanjcar & Stjepan Begusic & H. E. Stanley & Boris Podobnik, 2015. "Estimating Tipping Points in Feedback-Driven Financial Networks," Papers 1509.04952, arXiv.org.
    18. Lindkvist, Emilie & Norberg, Jon, 2014. "Modeling experiential learning: The challenges posed by threshold dynamics for sustainable renewable resource management," Ecological Economics, Elsevier, vol. 104(C), pages 107-118.
    19. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    20. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43744-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.