IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v280y2014icp129-139.html
   My bibliography  Save this article

Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE

Author

Listed:
  • Grimm, Volker
  • Augusiak, Jacqueline
  • Focks, Andreas
  • Frank, Béatrice M.
  • Gabsi, Faten
  • Johnston, Alice S.A.
  • Liu, Chun
  • Martin, Benjamin T.
  • Meli, Mattia
  • Radchuk, Viktoriia
  • Thorbek, Pernille
  • Railsback, Steven F.

Abstract

The potential of ecological models for supporting environmental decision making is increasingly acknowledged. However, it often remains unclear whether a model is realistic and reliable enough. Good practice for developing and testing ecological models has not yet been established. Therefore, TRACE, a general framework for documenting a model's rationale, design, and testing was recently suggested. Originally TRACE was aimed at documenting good modelling practice. However, the word ‘documentation’ does not convey TRACE's urgency. Therefore, we re-define TRACE as a tool for planning, performing, and documenting good modelling practice. TRACE documents should provide convincing evidence that a model was thoughtfully designed, correctly implemented, thoroughly tested, well understood, and appropriately used for its intended purpose. TRACE documents link the science underlying a model to its application, thereby also linking modellers and model users, for example stakeholders, decision makers, and developers of policies. We report on first experiences in producing TRACE documents. We found that the original idea underlying TRACE was valid, but to make its use more coherent and efficient, an update of its structure and more specific guidance for its use are needed. The updated TRACE format follows the recently developed framework of model ‘evaludation’: the entire process of establishing model quality and credibility throughout all stages of model development, analysis, and application. TRACE thus becomes a tool for planning, documenting, and assessing model evaludation, which includes understanding the rationale behind a model and its envisaged use. We introduce the new structure and revised terminology of TRACE and provide examples.

Suggested Citation

  • Grimm, Volker & Augusiak, Jacqueline & Focks, Andreas & Frank, Béatrice M. & Gabsi, Faten & Johnston, Alice S.A. & Liu, Chun & Martin, Benjamin T. & Meli, Mattia & Radchuk, Viktoriia & Thorbek, Pernil, 2014. "Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE," Ecological Modelling, Elsevier, vol. 280(C), pages 129-139.
  • Handle: RePEc:eee:ecomod:v:280:y:2014:i:c:p:129-139
    DOI: 10.1016/j.ecolmodel.2014.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014000611
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Augusiak, Jacqueline & Van den Brink, Paul J. & Grimm, Volker, 2014. "Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach," Ecological Modelling, Elsevier, vol. 280(C), pages 117-128.
    2. Saul I. Gass, 1983. "Feature Article—Decision-Aiding Models: Validation, Assessment, and Related Issues for Policy Analysis," Operations Research, INFORMS, vol. 31(4), pages 603-631, August.
    3. Meli, Mattia & Palmqvist, Annemette & Forbes, Valery E. & Groeneveld, Jürgen & Grimm, Volker, 2014. "Two pairs of eyes are better than one: Combining individual-based and matrix models for ecological risk assessment of chemicals," Ecological Modelling, Elsevier, vol. 280(C), pages 40-52.
    4. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    5. Liu, Chun & Sibly, Richard M. & Grimm, Volker & Thorbek, Pernille, 2013. "Linking pesticide exposure and spatial dynamics: An individual-based model of wood mouse (Apodemus sylvaticus) populations in agricultural landscapes," Ecological Modelling, Elsevier, vol. 248(C), pages 92-102.
    6. Focks, Andreas & ter Horst, Mechteld & van den Berg, Erik & Baveco, Hans & van den Brink, Paul J., 2014. "Integrating chemical fate and population-level effect models for pesticides at landscape scale: New options for risk assessment," Ecological Modelling, Elsevier, vol. 280(C), pages 102-116.
    7. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    8. Johnston, A.S.A. & Hodson, M.E. & Thorbek, P. & Alvarez, T. & Sibly, R.M., 2014. "An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides," Ecological Modelling, Elsevier, vol. 280(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    2. King, Elizabeth G. & Franz, Trenton E., 2016. "Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland," Ecological Modelling, Elsevier, vol. 329(C), pages 41-63.
    3. Courbaud, B. & Lafond, V. & Lagarrigues, G. & Vieilledent, G. & Cordonnier, T. & Jabot, F. & de Coligny, F., 2015. "Applying ecological model evaludation: Lessons learned with the forest dynamics model Samsara2," Ecological Modelling, Elsevier, vol. 314(C), pages 1-14.
    4. Schmolke, Amelie & Bartell, Steven M. & Roy, Colleen & Green, Nicholas & Galic, Nika & Brain, Richard, 2019. "Species-specific population dynamics and their link to an aquatic food web: A hybrid modeling approach," Ecological Modelling, Elsevier, vol. 405(C), pages 1-14.
    5. Dick, D.D.C. & Ayllón, D., 2017. "FloMan-MF: Floodplain Management for the Moor Frog − a simulation model for amphibian conservation in dynamic wetlands," Ecological Modelling, Elsevier, vol. 348(C), pages 110-124.
    6. Liukkonen, Lauri & Ayllón, Daniel & Kunnasranta, Mervi & Niemi, Marja & Nabe-Nielsen, Jacob & Grimm, Volker & Nyman, Anna-Maija, 2018. "Modelling movements of Saimaa ringed seals using an individual-based approach," Ecological Modelling, Elsevier, vol. 368(C), pages 321-335.
    7. Garcia, Clement & Stillman, Richard A. & Forster, Rodney M. & Silva, Tiago & Bremner, Julie, 2016. "Nuclear power and coastal birds: Predicting the ecological consequences of warm-water outflows," Ecological Modelling, Elsevier, vol. 342(C), pages 60-81.
    8. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    9. Boyd, Robin & Roy, Shovonlal & Sibly, Richard & Thorpe, Robert & Hyder, Kieran, 2018. "A general approach to incorporating spatial and temporal variation in individual-based models of fish populations with application to Atlantic mackerel," Ecological Modelling, Elsevier, vol. 382(C), pages 9-17.
    10. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    11. Komarov, Alexander & Chertov, Oleg & Bykhovets, Sergey & Shaw, Cindy & Nadporozhskaya, Marina & Frolov, Pavel & Shashkov, Maxim & Shanin, Vladimir & Grabarnik, Pavel & Priputina, Irina & Zubkova, Elen, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing," Ecological Modelling, Elsevier, vol. 345(C), pages 113-124.
    12. Martínez-López, Javier & Martínez-Fernández, Julia & Naimi, Babak & Carreño, María F. & Esteve, Miguel A., 2015. "An open-source spatio-dynamic wetland model of plant community responses to hydrological pressures," Ecological Modelling, Elsevier, vol. 306(C), pages 326-333.
    13. Negm, Lamyaa M. & Youssef, Mohamed A. & Jaynes, Dan B., 2017. "Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa," Agricultural Water Management, Elsevier, vol. 187(C), pages 57-68.
    14. Keane, Robert E. & McKenzie, Donald & Falk, Donald A. & Smithwick, Erica A.H. & Miller, Carol & Kellogg, Lara-Karena B., 2015. "Representing climate, disturbance, and vegetation interactions in landscape models," Ecological Modelling, Elsevier, vol. 309, pages 33-47.
    15. Erickson, Richard A. & Eager, Eric A. & Brey, Marybeth K. & Hansen, Michael J. & Kocovsky, Patrick M., 2017. "An integral projection model with YY-males and application to evaluating grass carp control," Ecological Modelling, Elsevier, vol. 361(C), pages 14-25.
    16. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    17. Cartwright, Samantha J. & Bowgen, Katharine M. & Collop, Catherine & Hyder, Kieran & Nabe-Nielsen, Jacob & Stafford, Richard & Stillman, Richard A. & Thorpe, Robert B. & Sibly, Richard M., 2016. "Communicating complex ecological models to non-scientist end users," Ecological Modelling, Elsevier, vol. 338(C), pages 51-59.
    18. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    19. Weller, Florian & Sherley, Richard B. & Waller, Lauren J. & Ludynia, Katrin & Geldenhuys, Deon & Shannon, Lynne J. & Jarre, Astrid, 2016. "System dynamics modelling of the Endangered African penguin populations on Dyer and Robben islands, South Africa," Ecological Modelling, Elsevier, vol. 327(C), pages 44-56.
    20. Getachew F. Belete & Alexey Voinov & Iñaki Arto & Kishore Dhavala & Tatyana Bulavskaya & Leila Niamir & Saeed Moghayer & Tatiana Filatova, 2019. "Exploring Low-Carbon Futures: A Web Service Approach to Linking Diverse Climate-Energy-Economy Models," Energies, MDPI, Open Access Journal, vol. 12(15), pages 1-24, July.
    21. Watermeyer, K.E. & Jarre, A. & Shannon, L.J. & Mulumba, P. & Botha, J., 2018. "A frame-based modelling approach to understanding changes in the distribution and abundance of sardine and anchovy in the southern Benguela," Ecological Modelling, Elsevier, vol. 371(C), pages 1-17.
    22. Erickson, Richard A. & Eager, Eric A. & Kocovsky, Patrick M. & Glover, David C. & Kallis, Jahn L. & Long, K.R., 2018. "A spatially discrete, integral projection model and its application to invasive carp," Ecological Modelling, Elsevier, vol. 387(C), pages 163-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:280:y:2014:i:c:p:129-139. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.