IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v56y2008i6p1393-1410.html
   My bibliography  Save this article

Estimating the Patient's Price of Privacy in Liver Transplantation

Author

Listed:
  • Burhaneddin Sandıkçı

    (The University of Chicago Booth School of Business, Chicago, Illinois 60637)

  • Lisa M. Maillart

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

  • Andrew J. Schaefer

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

  • Oguzhan Alagoz

    (Department of Industrial and Systems Engineering, University of Wisconsin, Madison, Wisconsin 53706)

  • Mark S. Roberts

    (Department of General Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213)

Abstract

In the United States, patients with end-stage liver disease must join a waiting list to be eligible for cadaveric liver transplantation. Due to privacy concerns, the details of the composition of this waiting list are not publicly available. This paper considers the benefits associated with creating a more transparent waiting list. We study these benefits by modeling the organ accept/reject decision faced by these patients as a Markov decision process in which the state of the process is described by patient health, quality of the offered liver, and a measure of the rank of the patient in the waiting list. We prove conditions under which there exist structured optimal solutions, such as monotone value functions and control-limit optimal policies. We define the concept of the patient's price of privacy, namely, the number of expected life days lost due to the lack of complete waiting list information. We conduct extensive numerical studies based on clinical data, which indicate that this price of privacy is typically on the order of 5% of the optimal solution value.

Suggested Citation

  • Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:6:p:1393-1410
    DOI: 10.1287/opre.1080.0648
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0648
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    2. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    3. Vieille, Nicolas, 2002. "Stochastic games: Recent results," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 48, pages 1833-1850, Elsevier.
    4. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
    5. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    6. Sanjeev Swami & Martin L. Puterman & Charles B. Weinberg, 2001. "Play It Again, Sam? Optimal Replacement Policies for a Motion Picture Exhibitor," Manufacturing & Service Operations Management, INFORMS, vol. 3(4), pages 369-386, July.
    7. Bruce D. Craven & Sardar M. N. Islam, 2005. "Optimization in Economics and Finance," Dynamic Modeling and Econometrics in Economics and Finance, Springer, number 978-0-387-24280-4, May.
    8. David H. Howard, 2001. "Dynamic Analysis of Liver Allocation Policies," Medical Decision Making, , vol. 21(4), pages 257-266, August.
    9. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    10. Oguzhan Alagoz & Cindy L. Bryce & Steven Shechter & Andrew Schaefer & Chung-Chou H. Chang & Derek C. Angus & Mark S. Roberts, 2005. "Incorporating Biological Natural History in Simulation Models: Empirical Estimates of the Progression of End-Stage Liver Disease," Medical Decision Making, , vol. 25(6), pages 620-632, November.
    11. Israel David & Uri Yechiali, 1995. "One-Attribute Sequential Assignment Match Processes in Discrete Time," Operations Research, INFORMS, vol. 43(5), pages 879-884, October.
    12. Steven M. Shechter & Cindy L. Bryce & Oguzhan Alagoz & Jennifer E. Kreke & James E. Stahl & Andrew J. Schaefer & Derek C. Angus & Mark S. Roberts, 2005. "A Clinically Based Discrete-Event Simulation of End-Stage Liver Disease and the Organ Allocation Process," Medical Decision Making, , vol. 25(2), pages 199-209, March.
    13. Rhonda Righter, 1989. "A Resource Allocation Problem in a Random Environment," Operations Research, INFORMS, vol. 37(2), pages 329-338, April.
    14. Xuanming Su & Stefanos Zenios, 2004. "Patient Choice in Kidney Allocation: The Role of the Queueing Discipline," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 280-301, June.
    15. John Hornberger & Jae-Hyeon Ahn, 1997. "Deciding Eligibility for Transplantation When a Donor Kidney Becomes Available," Medical Decision Making, , vol. 17(2), pages 160-170, April.
    16. Xuanming Su & Stefanos A. Zenios, 2006. "Recipient Choice Can Address the Efficiency-Equity Trade-off in Kidney Transplantation: A Mechanism Design Model," Management Science, INFORMS, vol. 52(11), pages 1647-1660, November.
    17. Israel David & Uri Yechiali, 1985. "A Time-dependent Stopping Problem with Application to Live Organ Transplants," Operations Research, INFORMS, vol. 33(3), pages 491-504, June.
    18. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    19. Howard, David H., 2002. "Why do transplant surgeons turn down organs?: A model of the accept/reject decision," Journal of Health Economics, Elsevier, vol. 21(6), pages 957-969, November.
    20. Jae-Hyeon Ahn & John C. Hornberger, 1996. "Involving Patients in the Cadaveric Kidney Transplant Allocation Process: A Decision-Theoretic Perspective," Management Science, INFORMS, vol. 42(5), pages 629-641, May.
    21. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    22. Stefanos A. Zenios, 2002. "Optimal Control of a Paired-Kidney Exchange Program," Management Science, INFORMS, vol. 48(3), pages 328-342, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    2. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.
    3. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    4. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    5. Chaithanya Bandi & Nikolaos Trichakis & Phebe Vayanos, 2019. "Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems," Management Science, INFORMS, vol. 65(1), pages 152-187, January.
    6. Barış Ata & Anton Skaro & Sridhar Tayur, 2017. "OrganJet: Overcoming Geographical Disparities in Access to Deceased Donor Kidneys in the United States," Management Science, INFORMS, vol. 63(9), pages 2776-2794, September.
    7. Ozge Ceren Ersoy & Diwakar Gupta & Timothy Pruett, 2021. "A critical look at the U.S. deceased‐donor organ procurement and utilization system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 3-29, February.
    8. Farhad Hasankhani & Amin Khademi, 2021. "Is it Time to Include Post‐Transplant Survival in Heart Transplantation Allocation Rules?," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2653-2671, August.
    9. Xuan Bi & Mochen Yang & Gediminas Adomavicius, 2024. "Consumer Acquisition for Recommender Systems: A Theoretical Framework and Empirical Evaluations," Information Systems Research, INFORMS, vol. 35(1), pages 339-362, March.
    10. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    11. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    12. Sait Tunç & Burhaneddin Sandıkçı & Bekir Tanrıöver, 2022. "A Simple Incentive Mechanism to Alleviate the Burden of Organ Wastage in Transplantation," Management Science, INFORMS, vol. 68(8), pages 5980-6002, August.
    13. Nazila Bazrafshan & M. M. Lotfi, 2020. "A finite-horizon Markov decision process model for cancer chemotherapy treatment planning: an application to sequential treatment decision making in clinical trials," Annals of Operations Research, Springer, vol. 295(1), pages 483-502, December.
    14. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    15. Anthony Bonifonte & Turgay Ayer & Benjamin Haaland, 2022. "An Analytics Approach to Guide Randomized Controlled Trials in Hypertension Management," Management Science, INFORMS, vol. 68(9), pages 6634-6647, September.
    16. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    17. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    18. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    19. Sepehr Nemati & Zeynep G. Icten & Lisa M. Maillart & Andrew J. Schaefer, 2020. "Mitigating Information Asymmetry in Liver Allocation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 234-248, April.
    20. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barış Ata & Anton Skaro & Sridhar Tayur, 2017. "OrganJet: Overcoming Geographical Disparities in Access to Deceased Donor Kidneys in the United States," Management Science, INFORMS, vol. 63(9), pages 2776-2794, September.
    2. Murat Kurt & Mark S. Roberts & Andrew J. Schaefer & M. Utku Ünver, 2011. "Valuing Prearranged Paired Kidney Exchanges: A Stochastic Game Approach," Boston College Working Papers in Economics 785, Boston College Department of Economics, revised 14 Oct 2011.
    3. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    4. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    5. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    6. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    7. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    8. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    9. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    10. Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.
    11. Zahra Gharibi & Michael Hahsler, 2021. "A Simulation-Based Optimization Model to Study the Impact of Multiple-Region Listing and Information Sharing on Kidney Transplant Outcomes," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    12. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    13. Ozge Ceren Ersoy & Diwakar Gupta & Timothy Pruett, 2021. "A critical look at the U.S. deceased‐donor organ procurement and utilization system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 3-29, February.
    14. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    15. Yael Deutsch & Israel David, 2020. "Benchmark policies for utility-carrying queues with impatience," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 97-120, June.
    16. Sepehr Nemati & Zeynep G. Icten & Lisa M. Maillart & Andrew J. Schaefer, 2020. "Mitigating Information Asymmetry in Liver Allocation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 234-248, April.
    17. Xuanming Su & Stefanos A. Zenios, 2006. "Recipient Choice Can Address the Efficiency-Equity Trade-off in Kidney Transplantation: A Mechanism Design Model," Management Science, INFORMS, vol. 52(11), pages 1647-1660, November.
    18. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    19. Nan Kong & Andrew J. Schaefer & Brady Hunsaker & Mark S. Roberts, 2010. "Maximizing the Efficiency of the U.S. Liver Allocation System Through Region Design," Management Science, INFORMS, vol. 56(12), pages 2111-2122, December.
    20. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:6:p:1393-1410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.