IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v281y2020i3p532-542.html
   My bibliography  Save this article

A hybrid model for predicting human physical activity status from lifelogging data

Author

Listed:
  • Ni, Ji
  • Chen, Bowei
  • Allinson, Nigel M.
  • Ye, Xujiong

Abstract

One trend in the recent healthcare transformations is people are encouraged to monitor and manage their health based on their daily diets and physical activity habits. However, much attention of the use of operational research and analytical models in healthcare has been paid to the systematic level such as country or regional policy making or organisational issues. This paper proposes a model concerned with healthcare analytics at the individual level, which can predict human physical activity status from sequential lifelogging data collected from wearable sensors. The model has a two-stage hybrid structure (in short, MOGP-HMM) – a multi-objective genetic programming (MOGP) algorithm in the first stage to reduce the dimensions of lifelogging data and a hidden Markov model (HMM) in the second stage for activity status prediction over time. It can be used as a decision support tool to provide real-time monitoring, statistical analysis and personalized advice to individuals, encouraging positive attitudes towards healthy lifestyles. We validate the model with the real data collected from a group of participants in the UK, and compare it with other popular two-stage hybrid models. Our experimental results show that the MOGP-HMM can achieve comparable performance. To the best of our knowledge, this is the very first study that uses the MOGP in the hybrid two-stage structure for individuals’ activity status prediction. It fits seamlessly with the current trend in the UK healthcare transformation of patient empowerment as well as contributing to a strategic development for more efficient and cost-effective provision of healthcare.

Suggested Citation

  • Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
  • Handle: RePEc:eee:ejores:v:281:y:2020:i:3:p:532-542
    DOI: 10.1016/j.ejor.2019.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719304655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey P. Krischer, 1980. "An Annotated Bibliography of Decision Analytic Applications to Health Care," Operations Research, INFORMS, vol. 28(1), pages 97-113, February.
    2. Ghaddar, Bissan & Naoum-Sawaya, Joe, 2018. "High dimensional data classification and feature selection using support vector machines," European Journal of Operational Research, Elsevier, vol. 265(3), pages 993-1004.
    3. Debaere, Steven & Coussement, Kristof & De Ruyck, Tom, 2018. "Multi-label classification of member participation in online innovation communities," European Journal of Operational Research, Elsevier, vol. 270(2), pages 761-774.
    4. Royston, Geoff, 1998. "Shifting the balance of health care into the 21st century," European Journal of Operational Research, Elsevier, vol. 105(2), pages 267-276, March.
    5. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    6. Yazan F. Roumani & Yaman Roumani & Joseph K. Nwankpa & Mohan Tanniru, 2018. "Classifying readmissions to a cardiac intensive care unit," Annals of Operations Research, Springer, vol. 263(1), pages 429-451, April.
    7. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G., 2016. "Predictive analytics model for healthcare planning and scheduling," European Journal of Operational Research, Elsevier, vol. 253(1), pages 121-131.
    8. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    9. Brailsford, Sally & Vissers, Jan, 2011. "OR in healthcare: A European perspective," European Journal of Operational Research, Elsevier, vol. 212(2), pages 223-234, July.
    10. Victoria C. P. Chen & Seoung Bum Kim & Asil Oztekin & Duraikannan Sundaramoorthi, 2018. "Preface: Data mining and analytics," Annals of Operations Research, Springer, vol. 263(1), pages 1-3, April.
    11. Denoyel, Victoire & Alfandari, Laurent & Thiele, Aurélie, 2017. "Optimizing healthcare network design under reference pricing and parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 263(3), pages 996-1006.
    12. Laura Auria & Rouslan A. Moro, 2008. "Support Vector Machines (SVM) as a Technique for Solvency Analysis," Discussion Papers of DIW Berlin 811, DIW Berlin, German Institute for Economic Research.
    13. Steven Debaere & Kristof Coussement & Tom de Ruyck, 2018. "Multi-label classification of member participation in online innovation communities," Post-Print hal-02990807, HAL.
    14. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    15. Brant E. Fries, 1976. "Bibliography of Operations Research in Health-Care Systems," Operations Research, INFORMS, vol. 24(5), pages 801-814, October.
    16. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    17. Ghaddar, Bissan & Sakr, Nizar & Asiedu, Yaw, 2016. "Spare parts stocking analysis using genetic programming," European Journal of Operational Research, Elsevier, vol. 252(1), pages 136-144.
    18. Hejazi, Taha-Hossein & Badri, Hossein & Yang, Kai, 2019. "A Reliability-based Approach for Performance Optimization of Service Industries: An Application to Healthcare Systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1016-1025.
    19. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    20. Hindle, Giles A. & Vidgen, Richard, 2018. "Developing a business analytics methodology: A case study in the foodbank sector," European Journal of Operational Research, Elsevier, vol. 268(3), pages 836-851.
    21. Brailsford, Sally & Harper, Paul, 2008. "OR in Health," European Journal of Operational Research, Elsevier, vol. 185(3), pages 901-904, March.
    22. Mortenson, Michael J. & Doherty, Neil F. & Robinson, Stewart, 2015. "Operational research from Taylorism to Terabytes: A research agenda for the analytics age," European Journal of Operational Research, Elsevier, vol. 241(3), pages 583-595.
    23. Tako, Antuela A. & Kotiadis, Kathy, 2015. "PartiSim: A multi-methodology framework to support facilitated simulation modelling in healthcare," European Journal of Operational Research, Elsevier, vol. 244(2), pages 555-564.
    24. Willis, Graham & Cave, Siôn & Kunc, Martin, 2018. "Strategic workforce planning in healthcare: A multi-methodology approach," European Journal of Operational Research, Elsevier, vol. 267(1), pages 250-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sobrie, Léon & Verschelde, Marijn & Hennebel, Veerle & Roets, Bart, 2023. "Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1201-1217.
    2. Mintz, Yonatan & Aswani, Anil & Kaminsky, Philip & Flowers, Elena & Fukuoka, Yoshimi, 2023. "Behavioral analytics for myopic agents," European Journal of Operational Research, Elsevier, vol. 310(2), pages 793-811.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    2. Martin Comis & Catherine Cleophas & Christina Büsing, 2021. "Patients, primary care, and policy: Agent-based simulation modeling for health care decision support," Health Care Management Science, Springer, vol. 24(4), pages 799-826, December.
    3. Duan, Yanqing & Cao, Guangming & Edwards, John S., 2020. "Understanding the impact of business analytics on innovation," European Journal of Operational Research, Elsevier, vol. 281(3), pages 673-686.
    4. Brailsford, Sally & Vissers, Jan, 2011. "OR in healthcare: A European perspective," European Journal of Operational Research, Elsevier, vol. 212(2), pages 223-234, July.
    5. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    6. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    7. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    8. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    9. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    10. Youngkeun Choi & Jae W. Choi, 2023. "Assessing the Predictive Performance of Machine Learning in Direct Marketing Response," International Journal of E-Business Research (IJEBR), IGI Global, vol. 19(1), pages 1-12, January.
    11. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    12. M. Nassereddine & M. A. Ellakkis & A. Azar & M. D. Nayeri, 2021. "Developing a Multi-methodology for Conflict Resolution: Case of Yemen’s Humanitarian Crisis," Group Decision and Negotiation, Springer, vol. 30(2), pages 301-320, April.
    13. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
    14. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    15. Narendra Singh & Pushpa Singh & Mukul Gupta, 2020. "An inclusive survey on machine learning for CRM: a paradigm shift," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 447-457, December.
    16. Small, Adrian & Wainwright, David, 2018. "Privacy and security of electronic patient records – Tailoring multimethodology to explore the socio-political problems associated with Role Based Access Control systems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 344-360.
    17. Lewlisa Saha & Hrudaya Kumar Tripathy & Tarek Gaber & Hatem El-Gohary & El-Sayed M. El-kenawy, 2023. "Deep Churn Prediction Method for Telecommunication Industry," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    18. Wen Zhang & Andrew Dunkley & Urvi Kanabar & David Elliott & Henry P. Wynn, 2022. "A decision support system for liability in civil litigation: a case study from an insurance company," Annals of Operations Research, Springer, vol. 315(2), pages 695-706, August.
    19. Andreea Dumitrache & Monica Mihaela Maer Matei, 2019. "Churn Analysis in a Romanian Telecommunications Company," Postmodern Openings, Editura Lumen, Department of Economics, vol. 10(4), pages 44-53, December.
    20. Tianyuan Zhang & Sérgio Moro & Ricardo F. Ramos, 2022. "A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation," Future Internet, MDPI, vol. 14(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:281:y:2020:i:3:p:532-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.