IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i3p1201-1217.html
   My bibliography  Save this article

Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways

Author

Listed:
  • Sobrie, Léon
  • Verschelde, Marijn
  • Hennebel, Veerle
  • Roets, Bart

Abstract

Predictive analytics is an increasingly popular tool for enhancing decision-making processes but is in many business settings based on rule-based models. These rule-based models reach their limits in complex settings. This study compares the performance of a rule-based system with a customised LSTM encoder-decoder deep learning model for predicting train delays. For this, we use a purposefully built real-world dataset on railway transportation, where trains’ interdependence over the network makes delay prediction more difficult. Results show that the deep learning model, which incorporates rich spatiotemporal interdependency information in real-time, outperforms the rule-based system by 18%, with the difference increasing to above 23% with higher complexity. The study also dissects the performance difference across different settings: dense versus rural areas, peak versus off-peak hours, low versus high delay, and before versus during the COVID-19 pandemic. The deep learning model is implemented as a proof of concept for decision support within Belgium’s railway infrastructure company Infrabel.

Suggested Citation

  • Sobrie, Léon & Verschelde, Marijn & Hennebel, Veerle & Roets, Bart, 2023. "Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1201-1217.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:3:p:1201-1217
    DOI: 10.1016/j.ejor.2023.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ranyard, J.C. & Fildes, R. & Hu, Tun-I, 2015. "Reassessing the scope of OR practice: The Influences of Problem Structuring Methods and the Analytics Movement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 1-13.
    2. Lynn Wu & Lorin Hitt & Bowen Lou, 2020. "Data Analytics, Innovation, and Firm Productivity," Management Science, INFORMS, vol. 66(5), pages 2017-2039, May.
    3. Blayac, Thierry & Stéphan, Maïté, 2021. "Are retrospective rail punctuality indicators useful? Evidence from users perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 193-213.
    4. Lynn Wu & Bowen Lou & Lorin Hitt, 2019. "Data Analytics Supports Decentralized Innovation," Management Science, INFORMS, vol. 65(10), pages 4863-4877, October.
    5. Ruben A. Kuipers & Carl-William Palmqvist & Nils O.E. Olsson & Lena Winslott Hiselius, 2021. "The passenger’s influence on dwell times at station platforms: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 41(6), pages 721-741, November.
    6. Erik Brynjolfsson & Kristina McElheran, 2016. "The Rapid Adoption of Data-Driven Decision-Making," American Economic Review, American Economic Association, vol. 106(5), pages 133-139, May.
    7. Huang, Ping & Wen, Chao & Fu, Liping & Lessan, Javad & Jiang, Chaozhe & Peng, Qiyuan & Xu, Xinyue, 2020. "Modeling train operation as sequences: A study of delay prediction with operation and weather data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    8. Altazin, Estelle & Dauzère-Pérès, Stéphane & Ramond, François & Tréfond, Sabine, 2020. "A multi-objective optimization-simulation approach for real time rescheduling in dense railway systems," European Journal of Operational Research, Elsevier, vol. 286(2), pages 662-672.
    9. Erik Brynjolfsson & Wang Jin & Kristina McElheran, 2021. "The power of prediction: predictive analytics, workplace complements, and business performance," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 56(4), pages 217-239, October.
    10. Topcu, Taylan G. & Triantis, Konstantinos & Roets, Bart, 2019. "Estimation of the workload boundary in socio-technical infrastructure management systems: The case of Belgian railroads," European Journal of Operational Research, Elsevier, vol. 278(1), pages 314-329.
    11. Chao Wen & Weiwei Mou & Ping Huang & Zhongcan Li, 2020. "A predictive model of train delays on a railway line," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 470-488, April.
    12. Yixin Lu & Alok Gupta & Wolfgang Ketter & Eric van Heck, 2019. "Dynamic Decision Making in Sequential Business-to-Business Auctions: A Structural Econometric Approach," Management Science, INFORMS, vol. 65(8), pages 3853-3876, August.
    13. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    14. Olsson, Nils O.E. & Haugland, Hans, 2004. "Influencing factors on train punctuality--results from some Norwegian studies," Transport Policy, Elsevier, vol. 11(4), pages 387-397, October.
    15. Mortenson, Michael J. & Doherty, Neil F. & Robinson, Stewart, 2015. "Operational research from Taylorism to Terabytes: A research agenda for the analytics age," European Journal of Operational Research, Elsevier, vol. 241(3), pages 583-595.
    16. Roets, Bart & Verschelde, Marijn & Christiaens, Johan, 2018. "Multi-output efficiency and operational safety: An analysis of railway traffic control centre performance," European Journal of Operational Research, Elsevier, vol. 271(1), pages 224-237.
    17. Xiaojia Guo & Yael Grushka-Cockayne & Bert De Reyck, 2020. "London Heathrow Airport Uses Real-Time Analytics for Improving Operations," Interfaces, INFORMS, vol. 50(5), pages 325-339, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia S. Foster & Nikolas Zolas, 2023. "AI Adoption in America: Who, What, and Where," NBER Working Papers 31788, National Bureau of Economic Research, Inc.
    2. Tiong, Kah Yong & Ma, Zhenliang & Palmqvist, Carl-William, 2023. "Analyzing factors contributing to real-time train arrival delays using seemingly unrelated regression models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    3. Sam Ruiqing Cao & Marco Iansiti, 2022. "Organizational Barriers to Transforming Large Finance Corporations: Cloud Adoption and the Importance of Technological Architecture," CESifo Working Paper Series 10142, CESifo.
    4. Burdin, Gabriel & Dughera, Stefano & Landini, Fabio & Belloc, Filippo, 2023. "Contested Transparency: Digital Monitoring Technologies and Worker Voice," GLO Discussion Paper Series 1340, Global Labor Organization (GLO).
    5. Alonso, Ricardo & Câmara, Odilon, 2021. "Organizing Data Analytics," CEPR Discussion Papers 16768, C.E.P.R. Discussion Papers.
    6. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    7. Paula Carroll, 2023. "Analytics Modules for Business Students," SN Operations Research Forum, Springer, vol. 4(2), pages 1-20, June.
    8. Conboy, Kieran & Mikalef, Patrick & Dennehy, Denis & Krogstie, John, 2020. "Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda," European Journal of Operational Research, Elsevier, vol. 281(3), pages 656-672.
    9. Pietronudo, Maria Cristina & Croidieu, Grégoire & Schiavone, Francesco, 2022. "A solution looking for problems? A systematic literature review of the rationalizing influence of artificial intelligence on decision-making in innovation management," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    10. Vidgen, Richard & Shaw, Sarah & Grant, David B., 2017. "Management challenges in creating value from business analytics," European Journal of Operational Research, Elsevier, vol. 261(2), pages 626-639.
    11. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    12. Abdullah Tirgil & Derya Fındık, 2023. "How Does Awareness Toward the Industry 4.0 Applications Affect Firms' Financial and Innovation Performance?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 1900-1922, June.
    13. Brea, Edgar & Ford, Jerad A., 2023. "No silver bullet: Cognitive technology does not lead to novelty in all firms," Technovation, Elsevier, vol. 122(C).
    14. Isabelle Piot-Lepetit & Joseph Nzongang, 2021. "Business analytics for managing performance of microfinance Institutions: A flexible management of the implementation process," Post-Print hal-03209188, HAL.
    15. Isabelle Piot-Lepetit & Joseph Nzongang, 2021. "Business Analytics for Managing Performance of Microfinance Institutions: A Flexible Management of the Implementation Process," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    16. Jaime Larumbe, 2021. "Evaluating Sustainability of Mass Rapid Transit Stations in Dubai," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    17. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    18. Duan, Yanqing & Cao, Guangming & Edwards, John S., 2020. "Understanding the impact of business analytics on innovation," European Journal of Operational Research, Elsevier, vol. 281(3), pages 673-686.
    19. Osman, Ibrahim H. & Anouze, Abdel Latef & Irani, Zahir & Lee, Habin & Medeni, Tunç D. & Weerakkody, Vishanth, 2019. "A cognitive analytics management framework for the transformation of electronic government services from users’ perspective to create sustainable shared values," European Journal of Operational Research, Elsevier, vol. 278(2), pages 514-532.
    20. Christian Peukert & Imke Reimers, 2022. "Digitization, Prediction, and Market Efficiency: Evidence from Book Publishing Deals," Management Science, INFORMS, vol. 68(9), pages 6907-6924, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:3:p:1201-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.