IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i2p793-811.html
   My bibliography  Save this article

Behavioral analytics for myopic agents

Author

Listed:
  • Mintz, Yonatan
  • Aswani, Anil
  • Kaminsky, Philip
  • Flowers, Elena
  • Fukuoka, Yoshimi

Abstract

Many multi-agent systems have a single coordinator providing incentives to a large number of agents. Two challenges faced by the coordinator are a finite budget from which to allocate incentives, and an initial lack of knowledge about the utility function of the agents. Here, we present a behavioral analytics approach for solving the coordinator’s problem when the agents make decisions by maximizing utility functions that depend on prior system states, inputs, and other parameters that are initially unknown. Our behavioral analytics framework involves three steps: first, we develop a model that describes the decision-making process of an agent; second, we use data to estimate the model parameters for each agent and predict their future decisions; and third, we use these predictions to optimize a set of incentives that will be provided to each agent. The framework and approaches we propose in this paper can then adapt incentives as new information is collected. Furthermore, we prove that the incentives computed by this approach are asymptotically optimal with respect to a loss function that describes the coordinator’s objective. We optimize incentives with a decomposition scheme, where each sub-problem solves the coordinator’s problem for a single agent, and the master problem is a pure integer program. We conclude with a simulation study to evaluate the effectiveness of our approach for designing a personalized weight loss program. The results show that our approach maintains efficacy of the program while reducing its costs by up to 60%, while adaptive heuristics provide substantially less savings.

Suggested Citation

  • Mintz, Yonatan & Aswani, Anil & Kaminsky, Philip & Flowers, Elena & Fukuoka, Yoshimi, 2023. "Behavioral analytics for myopic agents," European Journal of Operational Research, Elsevier, vol. 310(2), pages 793-811.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:793-811
    DOI: 10.1016/j.ejor.2023.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    2. Radner, Roy, 1985. "Repeated Principal-Agent Games with Discounting," Econometrica, Econometric Society, vol. 53(5), pages 1173-1198, September.
    3. H. Stephen Leff & Maqbool Dada & Stephen C. Graves, 1986. "An LP Planning Model for a Mental Health Community Support System," Management Science, INFORMS, vol. 32(2), pages 139-155, February.
    4. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    5. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    6. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    7. Sarang Deo & Seyed Iravani & Tingting Jiang & Karen Smilowitz & Stephen Samuelson, 2013. "Improving Health Outcomes Through Better Capacity Allocation in a Community-Based Chronic Care Model," Operations Research, INFORMS, vol. 61(6), pages 1277-1294, December.
    8. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    9. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    10. Krishnamurthy Iyer & Ramesh Johari & Ciamac C. Moallemi, 2014. "Information Aggregation and Allocative Efficiency in Smooth Markets," Management Science, INFORMS, vol. 60(10), pages 2509-2524, October.
    11. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    12. Aswani, Anil & Kaminsky, Philip & Mintz, Yonatan & Flowers, Elena & Fukuoka, Yoshimi, 2019. "Behavioral modeling in weight loss interventions," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1058-1072.
    13. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    14. Jonathan F. Bard & James T. Moore, 1992. "An algorithm for the discrete bilevel programming problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 419-435, April.
    15. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    16. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    17. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    18. Diana M. Negoescu & Kostas Bimpikis & Margaret L. Brandeau & Dan A. Iancu, 2018. "Dynamic Learning of Patient Response Types: An Application to Treating Chronic Diseases," Management Science, INFORMS, vol. 64(8), pages 3469-3488, August.
    19. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    20. Sachin Adlakha & Ramesh Johari, 2013. "Mean Field Equilibrium in Dynamic Games with Strategic Complementarities," Operations Research, INFORMS, vol. 61(4), pages 971-989, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aswani, Anil & Kaminsky, Philip & Mintz, Yonatan & Flowers, Elena & Fukuoka, Yoshimi, 2019. "Behavioral modeling in weight loss interventions," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1058-1072.
    2. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    3. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    4. Yu Zhang & Vidyadhar G. Kulkarni, 2017. "Two-day appointment scheduling with patient preferences and geometric arrivals," Queueing Systems: Theory and Applications, Springer, vol. 85(1), pages 173-209, February.
    5. Asli Ozen & Hari Balasubramanian, 2013. "The impact of case mix on timely access to appointments in a primary care group practice," Health Care Management Science, Springer, vol. 16(2), pages 101-118, June.
    6. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    7. Nan Liu & Stacey R. Finkelstein & Margaret E. Kruk & David Rosenthal, 2018. "When Waiting to See a Doctor Is Less Irritating: Understanding Patient Preferences and Choice Behavior in Appointment Scheduling," Management Science, INFORMS, vol. 64(5), pages 1975-1996, May.
    8. Yu Fu & Amarnath Banerjee, 2021. "A Stochastic Programming Model for Service Scheduling with Uncertain Demand: an Application in Open-Access Clinic Scheduling," SN Operations Research Forum, Springer, vol. 2(3), pages 1-32, September.
    9. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    10. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    11. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    12. Hari Balasubramanian & Sebastian Biehl & Longjie Dai & Ana Muriel, 2014. "Dynamic allocation of same-day requests in multi-physician primary care practices in the presence of prescheduled appointments," Health Care Management Science, Springer, vol. 17(1), pages 31-48, March.
    13. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    14. Nan Liu & Peter M. van de Ven & Bo Zhang, 2019. "Managing Appointment Booking Under Customer Choices," Management Science, INFORMS, vol. 65(9), pages 4280-4298, September.
    15. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    16. Sina Faridimehr & Saravanan Venkatachalam & Ratna Babu Chinnam, 2021. "Managing access to primary care clinics using scheduling templates," Health Care Management Science, Springer, vol. 24(3), pages 482-498, September.
    17. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    18. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
    19. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "Learning from private information in noisy repeated games," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1733-1769, September.
    20. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:793-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.