IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v85y2017i1d10.1007_s11134-016-9506-x.html
   My bibliography  Save this article

Two-day appointment scheduling with patient preferences and geometric arrivals

Author

Listed:
  • Yu Zhang

    (University of North Carolina at Chapel Hill)

  • Vidyadhar G. Kulkarni

    (University of North Carolina at Chapel Hill)

Abstract

We consider an appointment system where the patients have preferences about the appointment days. A patient may be scheduled on one of the days that is acceptable to her, or be denied appointment. The patient may or may not show up at the appointed time. The net cost is a convex function of the actual number of patients served on a given day. We study the optimal scheduling policy that minimizes the long-run average cost and study its structural properties. We advocate an index policy, which is easy to implement, performs well in comparison with other heuristic policies, and is close to the optimal policy.

Suggested Citation

  • Yu Zhang & Vidyadhar G. Kulkarni, 2017. "Two-day appointment scheduling with patient preferences and geometric arrivals," Queueing Systems: Theory and Applications, Springer, vol. 85(1), pages 173-209, February.
  • Handle: RePEc:spr:queues:v:85:y:2017:i:1:d:10.1007_s11134-016-9506-x
    DOI: 10.1007/s11134-016-9506-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-016-9506-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-016-9506-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rommert Dekker & Arie Hordijk, 1992. "Recurrence Conditions for Average and Blackwell Optimality in Denumerable State Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 17(2), pages 271-289, May.
    2. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    3. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    4. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    5. R. Dekker & A. Hordijk & F. M. Spieksma, 1994. "On the Relation Between Recurrence and Ergodicity Properties in Denumerable Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 19(3), pages 539-559, August.
    6. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    7. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    8. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    9. Hari Balasubramanian & Sebastian Biehl & Longjie Dai & Ana Muriel, 2014. "Dynamic allocation of same-day requests in multi-physician primary care practices in the presence of prescheduled appointments," Health Care Management Science, Springer, vol. 17(1), pages 31-48, March.
    10. Albert Y. Ha, 1997. "Optimal Dynamic Scheduling Policy for a Make-To-Stock Production System," Operations Research, INFORMS, vol. 45(1), pages 42-53, February.
    11. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    12. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    3. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    4. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    5. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    6. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    7. Yu Fu & Amarnath Banerjee, 2021. "A Stochastic Programming Model for Service Scheduling with Uncertain Demand: an Application in Open-Access Clinic Scheduling," SN Operations Research Forum, Springer, vol. 2(3), pages 1-32, September.
    8. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    9. Nan Liu & Peter M. van de Ven & Bo Zhang, 2019. "Managing Appointment Booking Under Customer Choices," Management Science, INFORMS, vol. 65(9), pages 4280-4298, September.
    10. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    11. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    12. Jianzhe Luo & Vidyadhar G. Kulkarni & Serhan Ziya, 2012. "Appointment Scheduling Under Patient No-Shows and Service Interruptions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 670-684, October.
    13. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    14. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    15. Jiayi Liu & Jingui Xie & Kum Khiong Yang & Zhichao Zheng, 2019. "Effects of Rescheduling on Patient No-Show Behavior in Outpatient Clinics," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 780-797, October.
    16. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    17. Song-Hee Kim & Ward Whitt & Won Chul Cha, 2018. "A Data-Driven Model of an Appointment-Generated Arrival Process at an Outpatient Clinic," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 181-199, February.
    18. Navid Izady, 2015. "Appointment Capacity Planning in Specialty Clinics: A Queueing Approach," Operations Research, INFORMS, vol. 63(4), pages 916-930, August.
    19. Asli Ozen & Hari Balasubramanian, 2013. "The impact of case mix on timely access to appointments in a primary care group practice," Health Care Management Science, Springer, vol. 16(2), pages 101-118, June.
    20. Nan Liu & Stacey R. Finkelstein & Margaret E. Kruk & David Rosenthal, 2018. "When Waiting to See a Doctor Is Less Irritating: Understanding Patient Preferences and Choice Behavior in Appointment Scheduling," Management Science, INFORMS, vol. 64(5), pages 1975-1996, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:85:y:2017:i:1:d:10.1007_s11134-016-9506-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.