IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v30y2021i9p3161-3191.html
   My bibliography  Save this article

An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening

Author

Listed:
  • Hossein Kamalzadeh
  • Vishal Ahuja
  • Michael Hahsler
  • Michael E. Bowen

Abstract

Type 2 diabetes is a chronic disease that affects millions of Americans and puts a significant burden on the healthcare system. The medical community sees screening patients to identify and treat prediabetes and diabetes early as an important goal; however, universal population screening is operationally not feasible, and screening policies need to take characteristics of the patient population into account. For instance, the screening policy for a population in an affluent neighborhood may differ from that of a safety‐net hospital. The problem of optimal diabetes screening—whom to screen and when to screen—is clearly important, and small improvements could have an enormous impact. However, the problem is typically only discussed from a practical viewpoint in the medical literature; a thorough theoretical framework from an operational viewpoint is largely missing. In this study, we propose an approach that builds on multiple methods—partially observable Markov decision process (POMDP), hidden Markov model (HMM), and predictive risk modeling (PRM). It uses available clinical information, in the form of electronic health records (EHRs), on specific patient populations to derive an optimal policy, which is used to generate screening decisions, individualized for each patient. The POMDP model, used for determining optimal decisions, lies at the core of our approach. We use HMM to estimate the cohort‐specific progression of diabetes (i.e., transition probability matrix) and the emission matrix. We use PRM to generate observations—in the form of individualized risk scores—for the POMDP. Both HMM and PRM are learned from EHR data. Our approach is unique because (i) it introduces a novel way of incorporating predictive modeling into a formal decision framework to derive an optimal screening policy; and (ii) it is based on real clinical data. We fit our model using data on a cohort of more than 60,000 patients over 5 years from a large safety‐net health system and then demonstrate the model's utility by conducting a simulation study. The results indicate that our proposed screening policy outperforms existing guidelines widely used in clinical practice. Our estimates suggest that implementing our policy for the studied cohort would add one quality‐adjusted life year for every patient, and at a cost that is 35% lower, compared with existing guidelines. Our proposed framework is generalizable to other chronic diseases, such as cancer and HIV.

Suggested Citation

  • Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
  • Handle: RePEc:bla:popmgt:v:30:y:2021:i:9:p:3161-3191
    DOI: 10.1111/poms.13422
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13422
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kamlesh Khunti & Hamidreza Mani & Felix Achana & Nicola Cooper & Laura J Gray & Melanie J Davies, 2015. "Systematic Review and Meta-Analysis of Response Rates and Diagnostic Yield of Screening for Type 2 Diabetes and Those at High Risk of Diabetes," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
    2. Eva K. Lee & Xin Wei & Fran Baker-Witt & Michael D. Wright & Alexander Quarshie, 2018. "Outcome-Driven Personalized Treatment Design for Managing Diabetes," Interfaces, INFORMS, vol. 48(5), pages 422-435, October.
    3. Dimitris Bertsimas & John Silberholz & Thomas Trikalinos, 2018. "Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening," Health Care Management Science, Springer, vol. 21(1), pages 105-118, March.
    4. Jagpreet Chhatwal & Oguzhan Alagoz & Elizabeth S. Burnside, 2010. "Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors," Operations Research, INFORMS, vol. 58(6), pages 1577-1591, December.
    5. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    6. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    7. Meltzer, David, 1997. "Accounting for future costs in medical cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 16(1), pages 33-64, February.
    8. Georg Meyer & Gediminas Adomavicius & Paul E. Johnson & Mohamed Elidrisi & William A. Rush & JoAnn M. Sperl-Hillen & Patrick J. O'Connor, 2014. "A Machine Learning Approach to Improving Dynamic Decision Making," Information Systems Research, INFORMS, vol. 25(2), pages 239-263, June.
    9. David Meltzer, 1997. "Accounting for Future Costs in Medical Cost-Effectiveness Analysis," NBER Working Papers 5946, National Bureau of Economic Research, Inc.
    10. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    11. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    12. Margret Bjarnadottir & David Anderson & Leila Zia & Kim Rhoads, 2018. "Predicting Colorectal Cancer Mortality: Models to Facilitate Patient‐Physician Conversations and Inform Operational Decision Making," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2162-2183, December.
    13. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    14. Rouba Ibrahim & Beste Kucukyazici & Vedat Verter & Michel Gendreau & Mark Blostein, 2016. "Designing Personalized Treatment: An Application to Anticoagulation Therapy," Production and Operations Management, Production and Operations Management Society, vol. 25(5), pages 902-918, May.
    15. Ying Lin & Shan Liu & Shuai Huang, 2018. "Selective sensing of a heterogeneous population of units with dynamic health conditions," IISE Transactions, Taylor & Francis Journals, vol. 50(12), pages 1076-1088, December.
    16. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    17. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    18. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    19. Sarang Deo & Kumar Rajaram & Sandeep Rath & Uday S. Karmarkar & Matthew B. Goetz, 2015. "Planning for HIV Screening, Testing, and Care at the Veterans Health Administration," Operations Research, INFORMS, vol. 63(2), pages 287-304, April.
    20. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    21. Dimitris Bertsimas & Allison O’Hair & Stephen Relyea & John Silberholz, 2016. "An Analytics Approach to Designing Combination Chemotherapy Regimens for Cancer," Management Science, INFORMS, vol. 62(5), pages 1511-1531, May.
    22. Yan Yang & Jeremy D. Goldhaber-Fiebert & Lawrence M. Wein, 2013. "Analyzing Screening Policies for Childhood Obesity," Management Science, INFORMS, vol. 59(4), pages 782-795, April.
    23. Vishal Ahuja & John R. Birge, 2020. "An Approximation Approach for Response-Adaptive Clinical Trial Design," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 877-894, October.
    24. Chris P. Lee & Glenn M. Chertow & Stefanos A. Zenios, 2008. "Optimal Initiation and Management of Dialysis Therapy," Operations Research, INFORMS, vol. 56(6), pages 1428-1449, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony Bonifonte & Turgay Ayer & Benjamin Haaland, 2022. "An Analytics Approach to Guide Randomized Controlled Trials in Hypertension Management," Management Science, INFORMS, vol. 68(9), pages 6634-6647, September.
    2. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    3. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    4. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
    5. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    6. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    7. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    8. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    9. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    10. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    11. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    12. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    13. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    14. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    15. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    16. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    17. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    18. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    19. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
    20. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:30:y:2021:i:9:p:3161-3191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.