IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v62y2016i5p1511-1531.html
   My bibliography  Save this article

An Analytics Approach to Designing Combination Chemotherapy Regimens for Cancer

Author

Listed:
  • Dimitris Bertsimas

    (Sloan School and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

  • Allison O’Hair

    (Stanford Graduate School of Business, Stanford, California 94305)

  • Stephen Relyea

    (Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420)

  • John Silberholz

    (Sloan School and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

Abstract

Cancer is a leading cause of death worldwide, and advanced cancer is often treated with combinations of multiple chemotherapy drugs. In this work, we develop models to predict the outcomes of clinical trials testing combination chemotherapy regimens before they are run and to select the combination chemotherapy regimens to be tested in new phase II and phase III clinical trials, with the primary objective of improving the quality of regimens tested in phase III trials compared to current practice. We built a database of 414 clinical trials for advanced gastric cancer and use it to build statistical models that attain an out-of-sample R 2 of 0.56 when predicting a trial’s median overall survival (OS) and an out-of-sample area under the curve (AUC) of 0.83 when predicting if a trial has unacceptably high toxicity. We propose models that use machine learning and optimization to suggest regimens to be tested in phase II and phase III trials. Though it is inherently challenging to evaluate the performance of such models without actually running clinical trials, we use two techniques to obtain estimates for the quality of regimens selected by our models compared with those actually tested in current clinical practice. Both techniques indicate that the models might improve the efficacy of the regimens selected for testing in phase III clinical trials without changing toxicity outcomes. This evaluation of the proposed models suggests that they merit further testing in a clinical trial setting. This paper was accepted by Noah Gans, stochastic models and systems .

Suggested Citation

  • Dimitris Bertsimas & Allison O’Hair & Stephen Relyea & John Silberholz, 2016. "An Analytics Approach to Designing Combination Chemotherapy Regimens for Cancer," Management Science, INFORMS, vol. 62(5), pages 1511-1531, May.
  • Handle: RePEc:inm:ormnsc:v:62:y:2016:i:5:p:1511-1531
    DOI: 10.1287/mnsc.2015.2363
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2015.2363
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2015.2363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. Laura J. van 't Veer & René Bernards, 2008. "Enabling personalized cancer medicine through analysis of gene-expression patterns," Nature, Nature, vol. 452(7187), pages 564-570, April.
    3. Lihui Zhao & Lu Tian & Tianxi Cai & Brian Claggett & L. J. Wei, 2013. "Effectively Selecting a Target Population for a Future Comparative Study," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 527-539, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    2. Xiaofei Bai & Anastasios A. Tsiatis & Wenbin Lu & Rui Song, 2017. "Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 585-604, October.
    3. Boyi Guo & Hannah D. Holscher & Loretta S. Auvil & Michael E. Welge & Colleen B. Bushell & Janet A. Novotny & David J. Baer & Nicholas A. Burd & Naiman A. Khan & Ruoqing Zhu, 2023. "Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 545-561, December.
    4. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    5. Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
    6. Caiyun Fan & Wenbin Lu & Rui Song & Yong Zhou, 2017. "Concordance-assisted learning for estimating optimal individualized treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1565-1582, November.
    7. Yuanyuan Shen & Tianxi Cai, 2016. "Identifying predictive markers for personalized treatment selection," Biometrics, The International Biometric Society, vol. 72(4), pages 1017-1025, December.
    8. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
    9. Runchao Jiang & Wenbin Lu & Rui Song & Marie Davidian, 2017. "On estimation of optimal treatment regimes for maximizing t-year survival probability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1165-1185, September.
    10. Jingxiang Chen & Haoda Fu & Xuanyao He & Michael R. Kosorok & Yufeng Liu, 2018. "Estimating individualized treatment rules for ordinal treatments," Biometrics, The International Biometric Society, vol. 74(3), pages 924-933, September.
    11. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    12. Baojiang Chen & Ao Yuan & Jing Qin, 2022. "Pool adjacent violators algorithm–assisted learning with application on estimating optimal individualized treatment regimes," Biometrics, The International Biometric Society, vol. 78(4), pages 1475-1488, December.
    13. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    14. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    15. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Mar 2025.
    16. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    17. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    18. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    19. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    20. Cai, Tingting & Li, Jianbo & Zhou, Qin & Yin, Songlou & Zhang, Riquan, 2024. "Subgroup detection based on partially linear additive individualized model with missing data in response," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:62:y:2016:i:5:p:1511-1531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.