IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i4p1422-1430.html
   My bibliography  Save this article

Receiver operating characteristic curves and confidence bands for support vector machines

Author

Listed:
  • Daniel J. Luckett
  • Eric B. Laber
  • Samer S. El‐Kamary
  • Cheng Fan
  • Ravi Jhaveri
  • Charles M. Perou
  • Fatma M. Shebl
  • Michael R. Kosorok

Abstract

Many problems that appear in biomedical decision‐making, such as diagnosing disease and predicting response to treatment, can be expressed as binary classification problems. The support vector machine (SVM) is a popular classification technique that is robust to model misspecification and effectively handles high‐dimensional data. The relative costs of false positives and false negatives can vary across application domains. The receiving operating characteristic (ROC) curve provides a visual representation of the trade‐off between these two types of errors. Because the SVM does not produce a predicted probability, an ROC curve cannot be constructed in the traditional way of thresholding a predicted probability. However, a sequence of weighted SVMs can be used to construct an ROC curve. Although ROC curves constructed using weighted SVMs have great potential for allowing ROC curves analyses that cannot be done by thresholding predicted probabilities, their theoretical properties have heretofore been underdeveloped. We propose a method for constructing confidence bands for the SVM ROC curve and provide the theoretical justification for the SVM ROC curve by showing that the risk function of the estimated decision rule is uniformly consistent across the weight parameter. We demonstrate the proposed confidence band method using simulation studies. We present a predictive model for treatment response in breast cancer as an illustrative example.

Suggested Citation

  • Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1422-1430
    DOI: 10.1111/biom.13365
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13365
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. Margaret Sullivan Pepe, 2000. "An Interpretation for the ROC Curve and Inference Using GLM Procedures," Biometrics, The International Biometric Society, vol. 56(2), pages 352-359, June.
    3. Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2014. "Probability-enhanced sufficient dimension reduction for binary classification," Biometrics, The International Biometric Society, vol. 70(3), pages 546-555, September.
    4. Ruth Etzioni & Margaret Pepe & Gary Longton & Chengcheng Hu & Gary Goodman, 1999. "Incorporating the Time Dimension in Receiver Operating Characteristic Curves: A Case Study of Prostate Cancer," Medical Decision Making, , vol. 19(3), pages 242-251, August.
    5. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    6. Martin W. McIntosh & Margaret Sullivan Pepe, 2002. "Combining Several Screening Tests: Optimality of the Risk Score," Biometrics, The International Biometric Society, vol. 58(3), pages 657-664, September.
    7. Guangqin Ma & W.J. Hall, 1993. "Confidence Bands for Receiver Operating Characteristic Curves," Medical Decision Making, , vol. 13(3), pages 191-197, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riikka Numminen & Ileana Montoya Perez & Ivan Jambor & Tapio Pahikkala & Antti Airola, 2023. "Quicksort leave-pair-out cross-validation for ROC curve analysis," Computational Statistics, Springer, vol. 38(3), pages 1579-1595, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    2. Holly Janes & Margaret S. Pepe, 2008. "Matching in Studies of Classification Accuracy: Implications for Analysis, Efficiency, and Assessment of Incremental Value," Biometrics, The International Biometric Society, vol. 64(1), pages 1-9, March.
    3. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    4. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    5. Sudesh Pundir & R. Amala, 2015. "Detecting diagnostic accuracy of two biomarkers through a bivariate log-normal ROC curve," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2671-2685, December.
    6. Guanhua Chen & Donglin Zeng & Michael R. Kosorok, 2016. "Personalized Dose Finding Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1509-1521, October.
    7. Debashis Ghosh, 2004. "Semiparametic models and estimation procedures for binormal ROC curves with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1038, Berkeley Electronic Press.
    8. Yanqing Wang & Ying‐Qi Zhao & Yingye Zheng, 2020. "Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint," Biometrics, The International Biometric Society, vol. 76(3), pages 853-862, September.
    9. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    10. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    11. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    12. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    13. Y. Huang & M. S. Pepe, 2009. "A Parametric ROC Model-Based Approach for Evaluating the Predictiveness of Continuous Markers in Case–Control Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1133-1144, December.
    14. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    15. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    16. Chong Zhang & Yufeng Liu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 44-46, March.
    17. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    18. Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
    19. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    20. Beom Seuk Hwang & Zhen Chen, 2015. "An Integrated Bayesian Nonparametric Approach for Stochastic and Variability Orders in ROC Curve Estimation: An Application to Endometriosis Diagnosis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 923-934, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1422-1430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.