IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i1d10.1007_s10729-021-09575-z.html
   My bibliography  Save this article

Optimizing diabetes screening frequencies for at-risk groups

Author

Listed:
  • Chou-Chun Wu

    (University of Southern California)

  • Sze-chuan Suen

    (University of Southern California)

Abstract

There is strong evidence that diabetes is underdiagnosed in the US: the Centers for Disease Control and Prevention (CDC) estimates that approximately 25% of diabetic patients are unaware of their condition. To encourage timely diagnosis of at-risk patients, we develop screening guidelines stratified by body mass index (BMI), age, and prior test history by using a Partially Observed Markov Decision Process (POMDP) framework to provide more personalized screening frequency recommendations. We identify structural results that prove the existence of threshold solutions in our problem and allow us to determine the relative timing and frequency of screening given different risk profiles. We then use nationally representative empirical data to identify a policy that provides the optimal action (screen or wait) every six months from age 45 to 90. We find that the current screening guidelines are suboptimal, and the recommended diabetes screening policy should be stratified by age and by finer BMI thresholds than in the status quo. We identify age ranges and BMI categories for which relatively less or more screening is needed compared to the existing guidelines to help physicians target patients most at risk. Compared to the status quo, we estimate that an optimal screening policy would generate higher net monetary benefits by $3,200-$3,570 and save $120-$1,290 in health expenditures per individual in the US above age 45.

Suggested Citation

  • Chou-Chun Wu & Sze-chuan Suen, 2022. "Optimizing diabetes screening frequencies for at-risk groups," Health Care Management Science, Springer, vol. 25(1), pages 1-23, March.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:1:d:10.1007_s10729-021-09575-z
    DOI: 10.1007/s10729-021-09575-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-021-09575-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-021-09575-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seamus Kent & Frauke Becker & Talitha Feenstra & An Tran-Duy & Iryna Schlackow & Michelle Tew & Ping Zhang & Wen Ye & Shi Lizheng & William Herman & Phil McEwan & Wendelin Schramm & Alastair Gray & Jo, 2019. "The Challenge of Transparency and Validation in Health Economic Decision Modelling: A View from Mount Hood," PharmacoEconomics, Springer, vol. 37(11), pages 1305-1312, November.
    2. Jagpreet Chhatwal & Suren Jayasuriya & Elamin H. Elbasha, 2016. "Changing Cycle Lengths in State-Transition Models," Medical Decision Making, , vol. 36(8), pages 952-964, November.
    3. Ley, S.H. & Korat, A.V.A. & Sun, Q. & Tobias, D.K. & Zhang, C. & Qi, L. & Willett, W.C. & Manson, J.E. & Hu, F.B., 2016. "Contribution of the nurses' health studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics," American Journal of Public Health, American Public Health Association, vol. 106(9), pages 1624-1630.
    4. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    5. Brian T. Denton & Murat Kurt & Nilay D. Shah & Sandra C. Bryant & Steven A. Smith, 2009. "Optimizing the Start Time of Statin Therapy for Patients with Diabetes," Medical Decision Making, , vol. 29(3), pages 351-367, May.
    6. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    7. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    8. John Cawley & Chad Meyerhoefer & Adam Biener & Mette Hammer & Neil Wintfeld, 2015. "Savings in Medical Expenditures Associated with Reductions in Body Mass Index Among US Adults with Obesity, by Diabetes Status," PharmacoEconomics, Springer, vol. 33(7), pages 707-722, July.
    9. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    10. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    11. Sze-chuan Suen & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2018. "Optimal timing of drug sensitivity testing for patients on first-line tuberculosis treatment," Health Care Management Science, Springer, vol. 21(4), pages 632-646, December.
    12. Mason, J.E. & Denton, B.T. & Shah, N.D. & Smith, S.A., 2014. "Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 727-738.
    13. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chou-Chun Wu & Yiwen Cao & Sze-chuan Suen & Eugene Lin, 2024. "Examining chronic kidney disease screening frequency among diabetics: a POMDP approach," Health Care Management Science, Springer, vol. 27(3), pages 391-414, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    2. Anthony Bonifonte & Turgay Ayer & Benjamin Haaland, 2022. "An Analytics Approach to Guide Randomized Controlled Trials in Hypertension Management," Management Science, INFORMS, vol. 68(9), pages 6634-6647, September.
    3. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    4. Chou-Chun Wu & Yiwen Cao & Sze-chuan Suen & Eugene Lin, 2024. "Examining chronic kidney disease screening frequency among diabetics: a POMDP approach," Health Care Management Science, Springer, vol. 27(3), pages 391-414, September.
    5. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    6. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    7. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    8. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    9. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    10. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    11. Nazila Bazrafshan & M. M. Lotfi, 2020. "A finite-horizon Markov decision process model for cancer chemotherapy treatment planning: an application to sequential treatment decision making in clinical trials," Annals of Operations Research, Springer, vol. 295(1), pages 483-502, December.
    12. Diana M. Negoescu & Kostas Bimpikis & Margaret L. Brandeau & Dan A. Iancu, 2018. "Dynamic Learning of Patient Response Types: An Application to Treating Chronic Diseases," Management Science, INFORMS, vol. 64(8), pages 3469-3488, August.
    13. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    14. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    15. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    16. Mabel C. Chou & Mahmut Parlar & Yun Zhou, 2017. "Optimal Timing to Initiate Medical Treatment for a Disease Evolving as a Semi-Markov Process," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 194-217, October.
    17. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    18. Mason, J.E. & Denton, B.T. & Shah, N.D. & Smith, S.A., 2014. "Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 727-738.
    19. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    20. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:1:d:10.1007_s10729-021-09575-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.