IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i8p812-d76230.html
   My bibliography  Save this article

Urbanization and Its Effects on Industrial Pollutant Emissions: An Empirical Study of a Chinese Case with the Spatial Panel Model

Author

Listed:
  • Jin Guo

    () (School of Economics and Management, Southeast University, 2 Si Pai Lou, Nanjing 210000, China)

  • Yingzhi Xu

    () (School of Economics and Management, Southeast University, 2 Si Pai Lou, Nanjing 210000, China)

  • Zhengning Pu

    () (School of Economics and Management, Southeast University, 2 Si Pai Lou, Nanjing 210000, China)

Abstract

Urbanization is considered a main indicator of regional economic development due to its positive effect on promoting industrial development; however, many regions, especially developing countries, have troubled in its negative effect—the aggravating environmental pollution. Many researchers have addressed that the rapid urbanization stimulated the expansion of the industrial production and increased the industrial pollutant emissions. However, this statement is exposed to a grave drawback in that urbanization not only expands industrial production but also improves labor productivity and changes industrial structure. To make up this drawback, we first decompose the influence of urbanization impacts on the industrial pollutant emissions into the scale effect, the intensive effect, and the structure effect by using the Kaya Identity and the LMDI Method; second, we perform an empirical study of the three effects by applying the spatial panel model on the basis of the data from 282 prefecture-level cities of China from 2003 to 2014. Our results indicate that (1) there are significant reverse U-shapes between China’s urbanization rate and the volume of industrial wastewater discharge, sulfur dioxide emissions and soot (dust) emissions; (2) the relationship between China’s urbanization and the industrial pollutant emissions depends on the scale effect, the intensive effect and the structure effect jointly. Specifically, the scale effect and the structure effect tend to aggravate the industrial wastewater discharge, the sulfur dioxide emissions and the soot (dust) emissions in China’s cities, while the intensive effect results in decreasing the three types of industrial pollutant emissions; (3) there are significant spatial autocorrelations of the industrial pollutant emissions among China’s cities, but the spatial spillover effect is non-existent or non-significant. We attempt to explain this contradiction due to the fact that the vast rural areas around China’s cities serve as sponge belts and absorb the spatial spillover of the industrial pollutant emissions from cities. According to the results, we argue the decomposition of the three effects is necessary and meaningful, it establishes a cornerstone in understanding the definite relationship between urbanization and industrial pollutant emissions, and effectively contributes to the relative policy making.

Suggested Citation

  • Jin Guo & Yingzhi Xu & Zhengning Pu, 2016. "Urbanization and Its Effects on Industrial Pollutant Emissions: An Empirical Study of a Chinese Case with the Spatial Panel Model," Sustainability, MDPI, Open Access Journal, vol. 8(8), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:812-:d:76230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/8/812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/8/812/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ciccone, Antonio, 2002. "Agglomeration effects in Europe," European Economic Review, Elsevier, vol. 46(2), pages 213-227, February.
    2. Stern, David I. & Common, Michael S., 2001. "Is There an Environmental Kuznets Curve for Sulfur?," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 162-178, March.
    3. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    4. Tolley, George S., 1974. "The welfare economics of city bigness," Journal of Urban Economics, Elsevier, vol. 1(3), pages 324-345, July.
    5. Fogarty, Michael S. & Garofalo, Gasper A., 1988. "Urban spatial structure and productivity growth in the manufacturing sector of cities," Journal of Urban Economics, Elsevier, vol. 23(1), pages 60-70, January.
    6. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    7. Susmita Dasgupta & Benoit Laplante & Hua Wang & David Wheeler, 2002. "Confronting the Environmental Kuznets Curve," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 147-168, Winter.
    8. Ronald L. Moomaw, 1981. "Productivity and City Size: A Critique of the Evidence," The Quarterly Journal of Economics, Oxford University Press, vol. 96(4), pages 675-688.
    9. Li, Tingting & Wang, Yong & Zhao, Dingtao, 2016. "Environmental Kuznets Curve in China: New evidence from dynamic panel analysis," Energy Policy, Elsevier, vol. 91(C), pages 138-147.
    10. Nakamura, Ryohei, 1985. "Agglomeration economies in urban manufacturing industries: A case of Japanese cities," Journal of Urban Economics, Elsevier, vol. 17(1), pages 108-124, January.
    11. Edward L. Glaeser, 1998. "Are Cities Dying?," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 139-160, Spring.
    12. Siqi Zheng & Matthew E. Kahn, 2013. "Understanding China's Urban Pollution Dynamics," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 731-772, September.
    13. Nasir, Muhammad & Ur Rehman, Faiz, 2011. "Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation," Energy Policy, Elsevier, vol. 39(3), pages 1857-1864, March.
    14. Easterlin, Richard A. & Morgan, Robson & Switek, Malgorzata & Wang, Fei, 2013. "China's Life Satisfaction, 1990-2010," IZA Discussion Papers 7196, Institute of Labor Economics (IZA).
    15. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    16. Kanada, Momoe & Dong, Liang & Fujita, Tsuyoshi & Fujii, Minoru & Inoue, Tsuyoshi & Hirano, Yujiro & Togawa, Takuya & Geng, Yong, 2013. "Regional disparity and cost-effective SO2 pollution control in China: A case study in 5 mega-cities," Energy Policy, Elsevier, vol. 61(C), pages 1322-1331.
    17. Hua-peng Qin & Qiong Su & Soon-Thiam Khu & Nv Tang, 2014. "Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development," Sustainability, MDPI, Open Access Journal, vol. 6(10), pages 1-19, October.
    18. Guanghu Wan & Chen Wang, 2014. "Unprecedented Urbanisation in Asia and Its Impacts on the Environment," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(3), pages 378-385, September.
    19. Haakon Vennemo & Kristin Aunan & Henrik Lindhjem & Hans Martin Seip, 2009. "Environmental Pollution in China: Status and Trends," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 3(2), pages 209-230, Summer.
    20. Dong, Huijuan & Dai, Hancheng & Dong, Liang & Fujita, Tsuyoshi & Geng, Yong & Klimont, Zbigniew & Inoue, Tsuyoshi & Bunya, Shintaro & Fujii, Minoru & Masui, Toshihiko, 2015. "Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis," Applied Energy, Elsevier, vol. 144(C), pages 165-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongrok Choi, 2017. "Sustainable Governance in Northeast Asia: Challenges for the Sustainable Frontier," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-7, January.
    2. Li, Li & Hong, Xuefei & Wang, Jun, 2020. "Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach," Energy, Elsevier, vol. 195(C).
    3. Jin Guo & Junhong Bai, 2019. "The Role of Public Participation in Environmental Governance: Empirical Evidence from China," Sustainability, MDPI, Open Access Journal, vol. 11(17), pages 1-19, August.
    4. Haider Mahmood & Maham Furqan & Omar Ali Bagais, 2018. "Environmental Accounting of Financial Development and Foreign Investment: Spatial Analyses of East Asia," Sustainability, MDPI, Open Access Journal, vol. 11(1), pages 1-16, December.
    5. Manhong Shen & Yongliang Yang, 2017. "The Water Pollution Policy Regime Shift and Boundary Pollution: Evidence from the Change of Water Pollution Levels in China," Sustainability, MDPI, Open Access Journal, vol. 9(8), pages 1-22, August.

    More about this item

    Keywords

    industrial pollutant emissions; urbanization; the spatial panel model; Chinese case;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:812-:d:76230. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.