IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7689-d1733185.html
   My bibliography  Save this article

The Impact of Government Subsidies and Carbon Taxes on Emission Reductions for Intermodal Transport Operator and Carrier

Author

Listed:
  • Yan Li

    (School of Business, Jianghan University, Wuhan 430056, China
    Manufacturing Industry Development Research Centre on Wuhan City Circle, Jianghan University, Wuhan 430056, China)

  • Jing Huang

    (School of Business, Jianghan University, Wuhan 430056, China)

  • Lingchunzi Li

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

To address carbon emission challenges in the transportation sector, intermodal transport—which enhances both economic and environmental benefits—is becoming ever more crucial. Governments often implement policies like subsidies or carbon taxes to steer intermodal transport towards sustainable development. This paper constructs a Stackelberg game model involving an eco-conscious shipper, an intermodal transport operator, and a carrier to analyze the combined economic and environmental impacts of carbon taxes, subsidies, and their dual-policy implementation on the intermodal transport system. The results of the study were as follows: (1) While either carbon taxes or subsidies alone enhance emission reduction and freight volume, their dual implementation generates synergistic effects, achieving superior emission reduction and freight growth; the study also challenges conventional wisdom by demonstrating that “reducing subsidies for intermodal transport may promote carbon reduction in transportation, while increasing taxes does not necessarily disadvantage logistics companies.” (2) Governments can achieve a win–win outcome for the economy and the environment by first prioritizing the increase of carbon taxes to effective levels, and guiding carriers to bear higher emissions reduction costs, before increasing subsidies. (3) Continuously enhancing shippers’ environmental awareness can effectively reduce total emissions. However, its impact on profits depends on the decision-making mode (decentralized vs. centralized) and the cost sharing among logistics companies. (4) There exists an optimal value for the intermodal operator’s share of emission reduction costs. Values that are too low can weaken the incentives for emission reduction, whereas values that are too high may harm profits. This research quantifies the complex interactions among policy combinations, consumer preferences, and enterprise cooperation modes. It offers valuable guidance for governments to design precise emission-reduction policies and helps upstream–downstream enterprises in intermodal transport systems optimize their operational strategies.

Suggested Citation

  • Yan Li & Jing Huang & Lingchunzi Li, 2025. "The Impact of Government Subsidies and Carbon Taxes on Emission Reductions for Intermodal Transport Operator and Carrier," Sustainability, MDPI, vol. 17(17), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7689-:d:1733185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2020. "A game theoretic approach for car pricing and its energy efficiency level versus governmental sustainability goals by considering rebound effect: A case study of South Korea," Applied Energy, Elsevier, vol. 271(C).
    2. Ghosh, Debabrata & Shah, Janat, 2012. "A comparative analysis of greening policies across supply chain structures," International Journal of Production Economics, Elsevier, vol. 135(2), pages 568-583.
    3. Cai, Dong & Zhang, Guoxing & Lai, Kee-hung & Guo, Chunxiang & Su, Bin, 2024. "Government incentive contract design for carbon reduction innovation considering market value under asymmetric information," Energy Policy, Elsevier, vol. 186(C).
    4. Cellini, Roberto & Siciliani, Luigi & Straume, Odd Rune, 2018. "A dynamic model of quality competition with endogenous prices," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 190-206.
    5. A. Gürhan Kök & Kevin Shang & Şafak Yücel, 2020. "Investments in Renewable and Conventional Energy: The Role of Operational Flexibility," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 925-941, September.
    6. Jiayi Joey Yu & Christopher S. Tang & Zuo-Jun Max Shen, 2018. "Improving Consumer Welfare and Manufacturer Profit via Government Subsidy Programs: Subsidizing Consumers or Manufacturers?," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 752-766, October.
    7. Wen, Wen & Zhou, P. & Zhang, Fuqiang, 2018. "Carbon emissions abatement: Emissions trading vs consumer awareness," Energy Economics, Elsevier, vol. 76(C), pages 34-47.
    8. Gaigné, C. & Hovelaque, V. & Mechouar, Y., 2020. "Carbon tax and sustainable facility location: The role of production technology," International Journal of Production Economics, Elsevier, vol. 224(C).
    9. Saberi, Sara, 2018. "Sustainable, multiperiod supply chain network model with freight carrier through reduction in pollution stock," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 421-444.
    10. Wang, Haijun & Li, Lingchunzi & Sun, Jiaxuan & Shen, Minghao, 2023. "Carbon emissions abatement with duopoly generators and eco-conscious consumers: Carbon tax vs carbon allowance," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 786-804.
    11. Fei Gao & Gilvan C. Souza, 2022. "Carbon Offsetting with Eco-Conscious Consumers," Management Science, INFORMS, vol. 68(11), pages 7879-7897, November.
    12. Tamannaei, Mohammad & Zarei, Hamid & Rasti-Barzoki, Morteza, 2021. "A game theoretic approach to sustainable freight transportation: Competition between road and intermodal road–rail systems with government intervention," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 272-295.
    13. Tao, Xuezong & Wu, Qin & Zhu, Lichao, 2017. "Mitigation potential of CO2 emissions from modal shift induced by subsidy in hinterland container transport," Energy Policy, Elsevier, vol. 101(C), pages 265-273.
    14. Y Bouchery & Jan C Fransoo, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," Post-Print hal-01954452, HAL.
    15. Ciwei Dong & Bin Shen & Pui-Sze Chow & Liu Yang & Chi To Ng, 2016. "Sustainability investment under cap-and-trade regulation," Annals of Operations Research, Springer, vol. 240(2), pages 509-531, May.
    16. Bouchery, Yann & Fransoo, Jan, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," International Journal of Production Economics, Elsevier, vol. 164(C), pages 388-399.
    17. Ma, Junhai & Hou, Yaming & Wang, Zongxian & Yang, Wenhui, 2021. "Pricing strategy and coordination of automobile manufacturers based on government intervention and carbon emission reduction," Energy Policy, Elsevier, vol. 148(PA).
    18. Mohammed Adgheem Alsunousi Adgheem & Göktuğ Tenekeci, 2025. "Investigating the Influence of Renewable Energy Use and Innovative Investments in the Transportation Sector on Environmental Sustainability—A Nonlinear Assessment," Sustainability, MDPI, vol. 17(10), pages 1-22, May.
    19. Gaigné, C. & Hovelaque, V. & Mechouar, Y., 2020. "Carbon tax and sustainable facility location: The role of production technology," International Journal of Production Economics, Elsevier, vol. 224(C).
    20. Aguirregabiria, Victor & Ho, Chun-Yu, 2012. "A dynamic oligopoly game of the US airline industry: Estimation and policy experiments," Journal of Econometrics, Elsevier, vol. 168(1), pages 156-173.
    21. Haifeng Zhao & Bin Lin & Wanqing Mao & Yang Ye, 2014. "Differential Game Analyses of Logistics Service Supply Chain Coordination by Cost Sharing Contract," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
    22. Chih Chang, Ching & Chia Lai, Tin, 2013. "Carbon allowance allocation in the transportation industry," Energy Policy, Elsevier, vol. 63(C), pages 1091-1097.
    23. Bansal, Sangeeta & Gangopadhyay, Shubhashis, 2003. "Tax/subsidy policies in the presence of environmentally aware consumers," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 333-355, March.
    24. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    25. Haifeng Zhao & Bin Lin & Wanqing Mao & Yang Ye, 2014. "Differential Game Analyses of Logistics Service Supply Chain Coordination by Cost Sharing Contract," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, April.
    26. Yongfei Li & Jiangtao Wang & Bin Wang & Clark Luo, 2024. "A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    27. Li Li & Weimin Li, 2022. "The Promoting Effect of Green Technology Innovations on Sustainable Supply Chain Development: Evidence from China’s Transport Sector," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    28. A. Gürhan Kök & Kevin Shang & Şafak Yücel, 2018. "Impact of Electricity Pricing Policies on Renewable Energy Investments and Carbon Emissions," Management Science, INFORMS, vol. 64(1), pages 131-148, January.
    29. Nur Sunar & Erica Plambeck, 2016. "Allocating Emissions Among Co-Products: Implications for Procurement and Climate Policy," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 414-428, July.
    30. Chuanxu Wang & Yan Jiao, 2022. "Shipping companies’ choice of low sulfur fuel oil with government subsidy and different maritime supply chain power structures," Maritime Policy & Management, Taylor & Francis Journals, vol. 49(3), pages 323-346, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haijun & Li, Lingchunzi & Sun, Jiaxuan & Shen, Minghao, 2023. "Carbon emissions abatement with duopoly generators and eco-conscious consumers: Carbon tax vs carbon allowance," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 786-804.
    2. Zhou, Xiaoyang & Wei, Xiaoya & Lin, Jun & Tian, Xin & Lev, Benjamin & Wang, Shouyang, 2021. "Supply chain management under carbon taxes: A review and bibliometric analysis," Omega, Elsevier, vol. 98(C).
    3. Jin, Wei & Yang, Jun & Wang, Chengfu, 2024. "Cost subsidy or environmental regulation? The effects of government interventions on environmental quality and 3BL performance," International Journal of Production Economics, Elsevier, vol. 270(C).
    4. De Moor, Bram J. & Creemers, Stefan & Boute, Robert N., 2023. "Breaking truck dominance in supply chains: Proactive freight consolidation and modal split transport," International Journal of Production Economics, Elsevier, vol. 257(C).
    5. Xia, Jing & Li, Yuxin & Niu, Wenju & Xue, Weili & Zhang, Lianmin, 2025. "Navigating the subsidy path to decarbonization under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
    6. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    7. Li, Shan & Wu, Jianhong & Jiang, Yonglei & Yang, Xutao, 2024. "Impacts of the sea-rail intermodal transport policy on carbon emission reduction: The China case study," Transport Policy, Elsevier, vol. 158(C), pages 211-223.
    8. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Damian Bonk & Sylwia Kowalska, 2020. "Modal Choice Preferences in Inland Container Transport in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 99-109.
    10. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    11. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    12. Masone, Adriano & Marzano, Vittorio & Simonelli, Fulvio & Sterle, Claudio, 2024. "Exact and heuristic approaches for the Modal Shift Incentive Problem," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    13. Cheng, Fei & Chen, Tong & Chen, Qiao, 2022. "Cost-reducing strategy or emission-reducing strategy? The choice of low-carbon decisions under price threshold subsidy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Tareq Abu-Aisha & Jean-François Audy & Mustapha Ouhimmou, 2024. "Toward an efficient sea-rail intermodal transportation system: a systematic literature review," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-27, December.
    16. Fang, Yuan & Yu, Yugang & Shi, Ye & Liu, Jie, 2020. "The effect of carbon tariffs on global emission control: A global supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    17. Volodymyr Babich & Ruben Lobel & Şafak Yücel, 2020. "Promoting Solar Panel Investments: Feed-in-Tariff vs. Tax-Rebate Policies," Manufacturing & Service Operations Management, INFORMS, vol. 22(6), pages 1148-1164, November.
    18. Hu, Qiaolin & Gu, Weihua & Wang, Shuaian, 2022. "Optimal subsidy scheme design for promoting intermodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    19. Daniel Ruben Pinchasik & Inger Beate Hovi & Christian Svendsen Mjøsund & Stein Erik Grønland & Erik Fridell & Martin Jerksjö, 2020. "Crossing Borders and Expanding Modal Shift Measures: Effects on Mode Choice and Emissions from Freight Transport in the Nordics," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    20. Sim, Jeongeun & Kim, Bowon, 2021. "Regulatory versus consumer pressure and retailer responsibility for upstream pollution in a supply chain," Omega, Elsevier, vol. 101(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7689-:d:1733185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.