IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p894-d312927.html
   My bibliography  Save this article

Crossing Borders and Expanding Modal Shift Measures: Effects on Mode Choice and Emissions from Freight Transport in the Nordics

Author

Listed:
  • Daniel Ruben Pinchasik

    (Institute of Transport Economics, Department of Economics, N-0349 Oslo, Norway)

  • Inger Beate Hovi

    (Institute of Transport Economics, Department of Economics, N-0349 Oslo, Norway)

  • Christian Svendsen Mjøsund

    (Institute of Transport Economics, Department of Economics, N-0349 Oslo, Norway)

  • Stein Erik Grønland

    (Sitma AS, N-0213 Oslo, Norway)

  • Erik Fridell

    (IVL Swedish Environmental Research Institute, Department of Transport and Department of Mobility, 41133 Gothenburg, Sweden)

  • Martin Jerksjö

    (IVL Swedish Environmental Research Institute, Department of Transport and Department of Mobility, 41133 Gothenburg, Sweden)

Abstract

Considering the underachievement on modal shift and environmental objectives for freight transport, scholars and policy makers recurrently ask how more road freight can be shifted to rail and waterborne transport. The current study simulates transport and modal distribution effects for several scenarios in which modal shift policy measures are strengthened, expanded, combined, and harmonized across borders in the Nordics. Found transport effects were then used in an environmental model to assess implications for energy use and emissions of CO 2,eq , NOx, and particulate matter, gaining insights into which policy measures are more effective or complement each other, and whether international harmonization might increase effectiveness, and modal shift. From our simulations, a Norwegian ecobonus scheme for rail yields larger modal shift away from road than a similar ecobonus for sea transport. Facilitating longer freight trains yields more modal shift but has high policy costs. Effects of harmonizing policies across Nordic countries vary but can be strengthened by combining different measures. However, even for scenarios with strong policy measures, reductions in CO 2,eq emissions do not exceed 3.6% in 2030 while sometimes increasing local air pollution. Modal shift policy should therefore not exclusively be regarded as environmental strategy, although it may contribute to other policy objectives.

Suggested Citation

  • Daniel Ruben Pinchasik & Inger Beate Hovi & Christian Svendsen Mjøsund & Stein Erik Grønland & Erik Fridell & Martin Jerksjö, 2020. "Crossing Borders and Expanding Modal Shift Measures: Effects on Mode Choice and Emissions from Freight Transport in the Nordics," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:894-:d:312927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marzano, Vittorio & Tocchi, Daniela & Papola, Andrea & Aponte, Dario & Simonelli, Fulvio & Cascetta, Ennio, 2018. "Incentives to freight railway undertakings compensating for infrastructural gaps: Methodology and practical application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 177-188.
    2. Tao, Xuezong & Wu, Qin & Zhu, Lichao, 2017. "Mitigation potential of CO2 emissions from modal shift induced by subsidy in hinterland container transport," Energy Policy, Elsevier, vol. 101(C), pages 265-273.
    3. Y Bouchery & Jan C Fransoo, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," Post-Print hal-01954452, HAL.
    4. Inge Vierth & Samuel Lindgren & Hanna Lindgren, 2018. "Vehicle Weight, Modal Split, and Emissions—An Ex-Post Analysis for Sweden," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    5. Bouchery, Yann & Fransoo, Jan, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," International Journal of Production Economics, Elsevier, vol. 164(C), pages 388-399.
    6. Alises, Ana & Vassallo, José Manuel, 2015. "Comparison of road freight transport trends in Europe. Coupling and decoupling factors from an Input–Output structural decomposition analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 141-157.
    7. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vytautas Paulauskas & Ludmiła Filina-Dawidowicz & Donatas Paulauskas, 2020. "The Method to Decrease Emissions from Ships in Port Areas," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    2. Johansson, Magnus & Vierth, Inge & Holmgren, Kristina & Cullinane, Kevin, 2023. "How will electrification and increased use of new fuels affect the effectiveness of freight modal shift policies?," Working Papers 2023:4, Swedish National Road & Transport Research Institute (VTI).
    3. Björk, Lisa & Vierth, Inge & Cullinane, Kevin, 2023. "Freight modal shift: A means or an objective in achieving lower emission targets? The case of Sweden," Transport Policy, Elsevier, vol. 142(C), pages 125-136.
    4. Marta Gonzalez-Aregall & Kevin Cullinane & Inge Vierth, 2021. "A Review of Port Initiatives to Promote Freight Modal Shifts in Europe: Evidence from Port Governance Systems," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    5. Olaf Jonkeren & Klaas Friso & Lourentz Hek, 2023. "Changes in external costs and infrastructure costs due to modal shift in freight transport in North-western Europe," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-40, December.
    6. Steffen Jaap Bakker & E. Ruben van Beesten & Ingvild Synn{o}ve Brynildsen & Anette Sandvig & Marit Siqveland & Asgeir Tomasgard, 2023. "STraM: a framework for strategic national freight transport modeling," Papers 2304.14001, arXiv.org.
    7. Sara Rogerson & Vendela Santén & Uni Sallnäs, 2021. "The Influence of Power and Trust on the Initiation and Duration of Modal Shift Solutions," Sustainability, MDPI, vol. 13(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Damian Bonk & Sylwia Kowalska, 2020. "Modal Choice Preferences in Inland Container Transport in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 99-109.
    3. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    4. Hu, Qiaolin & Gu, Weihua & Wang, Shuaian, 2022. "Optimal subsidy scheme design for promoting intermodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    6. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    7. Mengjie Zhang & Lei Wang & Huanhuan Feng & Luwei Zhang & Xiaoshuan Zhang & Jun Li, 2020. "Modeling Method for Cost and Carbon Emission of Sheep Transportation Based on Path Optimization," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    8. El Yaagoubi, Amina & Ferjani, Aicha & Essaghir, Yasmina & Sheikhahmadi, Farrokh & Abourraja, Mohamed Nezar & Boukachour, Jaouad & Baron, Marie-Laure & Duvallet, Claude & Khodadad-Saryazdi, Ali, 2022. "A logistic model for a french intermodal rail/road freight transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Daiki Min & Kwanghun Chung, 2017. "A Joint Optimal Decision on Shipment Size and Carbon Reduction under Direct Shipment and Peddling Distribution Strategies," Sustainability, MDPI, vol. 9(11), pages 1-21, November.
    10. Chang Zhao & Boya Zhou, 2021. "Impact of Express Delivery Industry’s Development on Transportation Sector’s Carbon Emissions: An Empirical Analysis from China," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    11. Pierre, Cariou & Francesco, Parola & Theo, Notteboom, 2019. "Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping," International Journal of Production Economics, Elsevier, vol. 208(C), pages 17-28.
    12. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    13. Tao, Xuezong & Wu, Qin & Zhu, Lichao, 2017. "Mitigation potential of CO2 emissions from modal shift induced by subsidy in hinterland container transport," Energy Policy, Elsevier, vol. 101(C), pages 265-273.
    14. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. De Moor, Bram J. & Creemers, Stefan & Boute, Robert N., 2023. "Breaking truck dominance in supply chains: Proactive freight consolidation and modal split transport," International Journal of Production Economics, Elsevier, vol. 257(C).
    16. Snežana Tadić & Mladen Krstić & Milovan Kovač, 2023. "Assessment of city logistics initiative categories sustainability: case of Belgrade," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1383-1419, February.
    17. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    18. Volha Yakavenka & Ioannis Mallidis & Dimitrios Vlachos & Eleftherios Iakovou & Zafeiriou Eleni, 2020. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products," Annals of Operations Research, Springer, vol. 294(1), pages 593-621, November.
    19. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    20. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:894-:d:312927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.