IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7639-d1731622.html
   My bibliography  Save this article

Industrial Structure Upgrading and Carbon Emission Intensity: The Mediating Roles of Green Total Factor Productivity and Labor Misallocation

Author

Listed:
  • Jinyan Luo

    (School of Economics and Management, Sichuan Normal University, Chengdu 610101, China)

  • Chengbo Xu

    (School of Economics and Management, Sichuan Normal University, Chengdu 610101, China)

Abstract

Industrial structure upgrading serves as an important driving force for the sustained and healthy development of the economy, and it has a positive effect on reducing carbon emission intensity. This study uses provincial panel data from China from 2004 to 2019, starting from the dual perspectives of green total factor productivity and labor misallocation, and employs a four-stage mediation regression model to estimate the mechanism of industrial structure upgrading on carbon emission intensity. The research findings show that: for every 1% increase in industrial structure upgrading, carbon emission intensity will decrease by 0.296%; the central region shows the most significant effect, followed by the western region, while the eastern region shows no significant effect. From the view of the influencing mechanism, industrial structure upgrading will promote green total factor productivity and labor misallocation. When each of the two mediating variables increase by 1%, carbon emission intensity will decrease by 0.12% and 0.054%, respectively. Under the influence of industrial structure upgrading, the inhibitory effects of green total factor productivity and labor misallocation on carbon emission intensity have weakened, and the two factors have made it difficult to form a mediating superposition effect within the sample period. The research conclusion provides the policy implications for China to continuously adhere to industrial structure upgrading, pay attention to improving green total factor productivity, and enhance the low-carbon technical level of workers to achieve the “dual carbon” goals.

Suggested Citation

  • Jinyan Luo & Chengbo Xu, 2025. "Industrial Structure Upgrading and Carbon Emission Intensity: The Mediating Roles of Green Total Factor Productivity and Labor Misallocation," Sustainability, MDPI, vol. 17(17), pages 1-27, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7639-:d:1731622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoliang Fan & Anni Zhu & Hongxia Xu, 2023. "Analysis of the Impact of Industrial Structure Upgrading and Energy Structure Optimization on Carbon Emission Reduction," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    2. Lee Schipper & Calanit Saenger & Anant Sudardshan, 2011. "Transport and Carbon Emissions in the United States: The Long View," Energies, MDPI, vol. 4(4), pages 1-19, March.
    3. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    4. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    5. Chang-Tai Hsieh & Peter J. Klenow, 2009. "Misallocation and Manufacturing TFP in China and India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1403-1448.
    6. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
    7. Qiuyang Zhou & Zhenqiang Li, 2021. "The impact of industrial structure upgrades on the urban–rural income gap: An empirical study based on China's provincial panel data," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1761-1782, September.
    8. Yize Yang & Xiujian Wei & Jie Wei & Xiang Gao, 2022. "Industrial Structure Upgrading, Green Total Factor Productivity and Carbon Emissions," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    9. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    10. Tao Ding & Yadong Ning & Yan Zhang, 2017. "The Contribution of China’s Outward Foreign Direct Investment (OFDI) to the Reduction of Global CO 2 Emissions," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    11. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    12. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    13. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    14. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    15. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    16. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    17. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pingdan & Yuan, Haoming & Bai, Fuli & Tian, Xin & Shi, Feng, 2018. "How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 145-154.
    2. Weidong Sun & Zhigang Chen & Danyang Wang, 2019. "Can Land Marketization Help Reduce Industrial Pollution?," IJERPH, MDPI, vol. 16(12), pages 1-16, June.
    3. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    4. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    5. Zhang, Chuanguo & Zhao, Wei, 2014. "Panel estimation for income inequality and CO2 emissions: A regional analysis in China," Applied Energy, Elsevier, vol. 136(C), pages 382-392.
    6. Eugen Dimant & Tim Krieger & Daniel Meierrieks, 2024. "Paying Them to Hate US: The Effect of US Military Aid on Anti-American Terrorism, 1968–2018," The Economic Journal, Royal Economic Society, vol. 134(663), pages 2772-2802.
    7. Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Jianxing Chen & Wenyang Wu & Stéphane Mbiankeu Nguea, 2025. "Combining the effects of industrialization and oil prices on CO2 emissions: What role do renewable energy, urbanization and financial crisis play?," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 2780-2796, April.
    9. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    10. Shaozhou Qi & Huarong Peng & Xiujie Tan, 2019. "The Moderating Effect of R&D Investment on Income and Carbon Emissions in China: Direct and Spatial Spillover Insights," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    11. Zhipeng Han & Liguo Wang & Feifei Zhao & Zijun Mao, 2022. "Does Low-Carbon City Policy Improve Industrial Capacity Utilization? Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 14(17), pages 1-26, September.
    12. Wang, Hai-Jie & Zheng, Mei-Qi & Yin, Hua-Tang & Chang, Chun-Ping, 2024. "Green innovation, industrial structure and urban eco-efficiency in Chinese cities," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1011-1024.
    13. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    14. Xuejiao Ma & Qichuan Jiang, 2019. "How to Balance the Trade-off between Economic Development and Climate Change?," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    15. Peppel-Srebrny, Jemima, 2021. "Not all government budget deficits are created equal: Evidence from advanced economies' sovereign bond markets," Journal of International Money and Finance, Elsevier, vol. 118(C).
    16. Bogetoft, Peter & Leth Hougaard, Jens, 2004. "Super efficiency evaluations based on potential slack," European Journal of Operational Research, Elsevier, vol. 152(1), pages 14-21, January.
    17. Joan Monras, 2020. "Immigration and Wage Dynamics: Evidence from the Mexican Peso Crisis," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3017-3089.
    18. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    19. Wang, Yafei & Shi, Ming & Zhao, Zihan & Liu, Junnan & Zhang, Shiqiu, 2025. "How does green finance improve the total factor energy efficiency? Capturing the mediating role of green management innovation and embodied technological progress," Energy Economics, Elsevier, vol. 142(C).
    20. Muhammad, Tufail & Ni, Guohua & Chen, Zhenling & Mallek, Sabrine & Dudek, Marek & Mentel, Grzegorz, 2024. "Addressing resource curse: How mineral resources influence industrial structure dynamics of the BRI 57 oil-exporting countries," Resources Policy, Elsevier, vol. 99(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7639-:d:1731622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.