Author
Listed:
- Nhoyidi Nsan
(Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK)
- Chinemerem Obi
(Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station, TX 77845, USA)
- Emmanuel Etuk
(Stephen M. Ross School of Business, University of Michigan, Ann Arbor, MI 48109, USA)
Abstract
Electric vehicles (EVs) are central to the decarbonisation of transport systems and achievement of the Sustainable Development Goals (such as SDGs 7 and 13, affordable and clean energy and climate action, respectively). This study adopts a hybrid methodological framework, merging panel econometric models with machine learning (ML), to examine the drivers of EV adoption across Africa, China, and the European Union between 2015 and 2023. We analyse the influence of charging station density (CSD), GDP per capita, renewable energy share (RES), urbanisation, and electricity access using both first-difference and fixed-effects models for causal insight and Random Forest, XGBoost, and neural network algorithms for predictive analytics. While CSD emerges as the most significant driver across models, results reveal a paradox—GDP per capita demonstrates a negative relationship with EV adoption in econometric models yet ranks among the top predictive features in ML models. This divergence highlights the limitations of assuming linear causality in high-income settings and underscores the value of combining causal and predictive approaches. SHAP and PCA analyses further illustrate regional disparities, with Africa showing low feasibility scores due to infrastructure and grid limitations. Sub-regional case studies (Kenya, South Africa, Morocco, Nigeria) emphasise the need for tailored, integrated policies that address both energy infrastructure and transport equity. Findings highlight the value of combining interpretable models with predictive algorithms to inform inclusive and region-specific EV transition strategies.
Suggested Citation
Nhoyidi Nsan & Chinemerem Obi & Emmanuel Etuk, 2025.
"Bridging Policy, Infrastructure, and Innovation: A Causal and Predictive Analysis of Electric Vehicle Integration Across Africa, China, and the EU,"
Sustainability, MDPI, vol. 17(12), pages 1-34, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:12:p:5449-:d:1678226
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5449-:d:1678226. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.