Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
- Daisik Nam & Jaewoo Cho, 2020. "Deep Neural Network Design for Modeling Individual-Level Travel Mode Choice Behavior," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
- Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
- Miriam Pirra & Marco Diana, 2019. "A study of tour-based mode choice based on a Support Vector Machine classifier," Transportation Planning and Technology, Taylor & Francis Journals, vol. 42(1), pages 23-36, January.
- Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
- Youssef M. Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2021. "Discrete Choice Analysis with Machine Learning Capabilities," Papers 2101.10261, arXiv.org.
- Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
- Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
- Hamed Naseri & E. Owen D. Waygood & Bobin Wang & Zachary Patterson & Ricardo A. Daziano, 2021. "A Novel Feature Selection Technique to Better Predict Climate Change Stage of Change," Sustainability, MDPI, vol. 14(1), pages 1-23, December.
- Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
- Shenhao Wang & Baichuan Mo & Stephane Hess & Jinhua Zhao, 2021. "Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark," Papers 2102.01130, arXiv.org.
- Thomas Klinger & Martin Lanzendorf, 2016. "Moving between mobility cultures: what affects the travel behavior of new residents?," Transportation, Springer, vol. 43(2), pages 243-271, March.
- Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
- Khaled J. Assi & Md Shafiullah & Kh Md Nahiduzzaman & Umer Mansoor, 2019. "Travel-To-School Mode Choice Modelling Employing Artificial Intelligence Techniques: A Comparative Study," Sustainability, MDPI, vol. 11(16), pages 1-12, August.
- Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
- Hensher, David A. & Rose, John M., 2007. "Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 428-443, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
- Hu, Songhua & Xiong, Chenfeng & Chen, Peng & Schonfeld, Paul, 2023. "Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
- Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
- Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
- Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
- Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
- S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
- Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
- Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
- Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
- Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
- Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
- Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
- Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
- Jae Seung Lee & Sungjin Park & Sanghoon Jung, 2016. "Effect of Crime Prevention through Environmental Design (CPTED) Measures on Active Living and Fear of Crime," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
- Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
- Brown, Sarah & Greene, William H. & Harris, Mark N. & Taylor, Karl, 2015. "An inverse hyperbolic sine heteroskedastic latent class panel tobit model: An application to modelling charitable donations," Economic Modelling, Elsevier, vol. 50(C), pages 228-236.
- Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
- Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
- Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
More about this item
Keywords
children’s travel mode choice; multi-objective hyperparameter tuning; metaheuristic optimization; light gradient boosting machine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16844-:d:1004107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.