IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2571-d1052996.html
   My bibliography  Save this article

Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids

Author

Listed:
  • Ernest Barceló

    (Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Helsinki, Finland
    Group Sustainability, Omya International AG, 4665 Oftringen, Switzerland)

  • Katarina Dimić-Mišić

    (Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Helsinki, Finland)

  • Monir Imani

    (Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Helsinki, Finland)

  • Vesna Spasojević Brkić

    (Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia)

  • Michael Hummel

    (Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Helsinki, Finland)

  • Patrick Gane

    (Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Helsinki, Finland
    Faculty of Technology and Metallurgy, University of Belgrade, 11200 Belgrade, Serbia)

Abstract

Nowadays, fossil fuels are used in a clearly unsustainable way that can bring potentially catastrophic consequences. Electricity is currently delivered to end users by generation and energy transmission companies. Previous research shows that the development of modern circular economy sets a need for the re-orientation of socio and economic development of decentralized systems, including energy basis. In addition to being ecological, the use of renewable energy sources also has economic significance by contributing to energy independence. Citizens, industries, local and national authorities become interconnected within emerging novel renewable energy sourcing communities, through which they establish trade of energy and, most importantly, models of investing and reshaping the distribution of renewable energy. The modern portfolio management of renewable energy networking is aiming toward decentralized systems of trade, where the consumer becomes a producer (prosumer) within the network, itself managed by users. Excess energy produced in the micro-grid nets within the over-arching national and transnational energy grid should be accounted for and managed with blockchain technology for financial and structural security. The decentralization of the energy market requires the establishment of strict norms that will regulate the market and taxation of profits arising. The extensive literature review on blockchain in the energy sector reflects a very pragmatic and narrow approach to the topic, although it is evident that the distribution of energy within the blockchain would enable economic development through reducing cost and ensuring more secure energy trade. Blockchain technology embeds the related digital codes, in which information will be visible to all, but also secured from hacking and duplicating. However, there are challenges to this paradigm, not least the energy consumption of the extensive nodal mesh required to perform the necessary protocols. This paper aims to provide an overview of the application of blockchain technology and the need for the development of the regulatory system and of potential solutions to the challenges posed. By undertaking an energy consumption analysis of blockchain implementation from first electronic principles, which has not been constructed before in the literature, this paper’s conclusion stresses the future demand for reducing energy consumption and considers the latest findings in the quantum coupling of light signals as a potential for solving the enormous ledger duplication structure problem.

Suggested Citation

  • Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2571-:d:1052996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bongini, Paola & Osborne, Francesco & Pedrazzoli, Alessia & Rossolini, Monica, 2022. "A topic modelling analysis of white papers in security token offerings: Which topic matters for funding?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    2. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    3. Bruno, August & Weber, Paige & Yates, Andrew J., 2023. "Can Bitcoin mining increase renewable electricity capacity?," Resource and Energy Economics, Elsevier, vol. 74(C).
    4. Diestelmeier, Lea, 2019. "Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law," Energy Policy, Elsevier, vol. 128(C), pages 189-196.
    5. Dorfleitner, Gregor & Muck, Franziska & Scheckenbach, Isabel, 2021. "Blockchain applications for climate protection: A global empirical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Naeem, Muhammad Abubakr & Karim, Sitara & Hasan, Mudassar & Lucey, Brian M. & Kang, Sang Hoon, 2022. "Nexus between oil shocks and agriculture commodities: Evidence from time and frequency domain," Energy Economics, Elsevier, vol. 112(C).
    7. Lee Won Park & Sanghoon Lee & Hangbae Chang, 2018. "A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    8. Mihaela Gabriela Belu, 2019. "Application of Blockchain in International Trade: An Overview," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 22(71), pages 2-15, March.
    9. Ji, Qiang & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2019. "Information interdependence among energy, cryptocurrency and major commodity markets," Energy Economics, Elsevier, vol. 81(C), pages 1042-1055.
    10. Cristian Lepore & Michela Ceria & Andrea Visconti & Udai Pratap Rao & Kaushal Arvindbhai Shah & Luca Zanolini, 2020. "A Survey on Blockchain Consensus with a Performance Comparison of PoW, PoS and Pure PoS," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    11. Kiesling, Lynne, 2020. "Innovations and Decentralized Energy Markets: Technologies and Institutions for a Clean and Prosperous Energy Future," Center for Growth and Opportunity at Utah State University 307171, Center for Growth and Opportunity.
    12. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    13. Lo, Yuen C. & Medda, Francesca, 2020. "Assets on the blockchain: An empirical study of Tokenomics," Information Economics and Policy, Elsevier, vol. 53(C).
    14. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    15. Jianjun Sun & Jiaqi Yan & Kem Z. K. Zhang, 2016. "Blockchain-based sharing services: What blockchain technology can contribute to smart cities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-9, December.
    16. Li, Jingming & Li, Nianping & Peng, Jinqing & Cui, Haijiao & Wu, Zhibin, 2019. "Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies," Energy, Elsevier, vol. 168(C), pages 160-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdin, Zainul, 2024. "Empowering the hydrogen economy: The transformative potential of blockchain technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Govindan, Kannan & Jain, Preeti & Kr. Singh, Rajesh & Mishra, Ruchi, 2024. "Blockchain technology as a strategic weapon to bring procurement 4.0 truly alive: Literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    3. Diego Peña & Paul Arevalo & Yadyra Ortiz & Franciso Jurado, 2024. "Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters," Energies, MDPI, vol. 17(15), pages 1-24, July.
    4. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    2. Thomas Puschmann & Christian Hugo Hoffmann & Valentyn Khmarskyi, 2020. "How Green FinTech Can Alleviate the Impact of Climate Change—The Case of Switzerland," Sustainability, MDPI, vol. 12(24), pages 1-30, December.
    3. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    4. Marco Schletz & Ana Cardoso & Gabriela Prata Dias & Søren Salomo, 2020. "How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison," Energies, MDPI, vol. 13(22), pages 1-23, November.
    5. Anatolyy Dzyuba & Irina Solovyeva & Dmitry Konopelko, 2023. "Managing Electricity Costs in Industrial Mining and Cryptocurrency Data Centers," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 76-90, July.
    6. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    7. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Abderahman Rejeb & Karim Rejeb & Steven J. Simske & John G. Keogh, 2022. "Blockchain technology in the smart city: a bibliometric review," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 2875-2906, October.
    9. Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2019. "The Role of Smart Contracts in Sustainability: Worldwide Research Trends," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
    10. Ghabri, Yosra & Ben Rhouma, Oussama & Gana, Marjène & Guesmi, Khaled & Benkraiem, Ramzi, 2022. "Information transmission among energy markets, cryptocurrencies, and stablecoins under pandemic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    11. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    12. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    13. Nadhira Khezami & Nourcherif Gharbi & Bilel Neji & Naceur Benhadj Braiek, 2022. "Blockchain Technology Implementation in the Energy Sector: Comprehensive Literature Review and Mapping," Sustainability, MDPI, vol. 14(23), pages 1-45, November.
    14. Furqan Jameel & Uzair Javaid & Wali Ullah Khan & Muhammad Naveed Aman & Haris Pervaiz & Riku Jäntti, 2020. "Reinforcement Learning in Blockchain-Enabled IIoT Networks: A Survey of Recent Advances and Open Challenges," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    15. Oluwaseun Fadeyi & Ondrej Krejcar & Petra Maresova & Kamil Kuca & Peter Brida & Ali Selamat, 2019. "Opinions on Sustainability of Smart Cities in the Context of Energy Challenges Posed by Cryptocurrency Mining," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    16. Thomas Puschmann & Valentyn Khmarskyi, 2024. "Green fintech: Developing a research agenda," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(4), pages 2823-2837, July.
    17. Anh Ngoc Quang Huynh & Duy Duong & Tobias Burggraf & Hien Thi Thu Luong & Nam Huu Bui, 2022. "Energy Consumption and Bitcoin Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 79-93, March.
    18. Adele Parmentola & Antonella Petrillo & Ilaria Tutore & Fabio De Felice, 2022. "Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the perspective of Sustainable Development Goals (SDGs)," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 194-217, January.
    19. Kumar, Sourabh & Barua, Mukesh Kumar, 2023. "Exploring the hyperledger blockchain technology disruption and barriers of blockchain adoption in petroleum supply chain," Resources Policy, Elsevier, vol. 81(C).
    20. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2571-:d:1052996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.