IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v11y2024i10p603-634.html
   My bibliography  Save this article

Innovative Systems for Renewable Energy Integration: Harnessing AI, Blockchain, and Hybrid Technologies – A Review

Author

Listed:
  • Oladotun Victor Ogunyemi

    (Sustainable Communities, Department of Social Sciences, Faculty of Art and Science, Michigan Technological University, Houghton, Michigan)

  • Ibrahim Adeiza Ahmed

    (Department of Engineering Management & Systems Engineering, The George Washington University, Washington D.C)

  • Omotosho Abdulqudus Ajibola

    (Urban and Regional Planning Faculty of Environmental Sciences, University of Lagos)

Abstract

The transition to renewable energy systems is critical for addressing global energy security, reducing greenhouse gas emissions, and mitigating climate change. However, the integration of renewable energy sources such as wind, solar, and hydropower into traditional power grids presents a range of technical, operational, and policy challenges. This review explores innovative systems and technologies developed to support the large-scale integration of renewable energy, focusing on smart grids, energy storage solutions, demand-side management, and decentralized energy systems. Additionally, several successful case studies from countries like Denmark, Germany, and Australia are analyzed to highlight best practices and lessons learned in renewable energy integration. Emerging trends such as digitalization, the electrification of transportation, and vehicle-to-grid technology are discussed, alongside the crucial role of government policies and international cooperation in overcoming regulatory barriers and market constraints. The review concludes by outlining future research directions aimed at advancing energy storage, grid modernization, and ensuring a just transition to a low-carbon economy. By leveraging innovative technologies and supportive policies, the integration of renewable energy into global power systems can be accelerated, paving the way for a sustainable and resilient energy future.

Suggested Citation

  • Oladotun Victor Ogunyemi & Ibrahim Adeiza Ahmed & Omotosho Abdulqudus Ajibola, 2024. "Innovative Systems for Renewable Energy Integration: Harnessing AI, Blockchain, and Hybrid Technologies – A Review," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(10), pages 603-634, October.
  • Handle: RePEc:bjc:journl:v:11:y:2024:i:10:p:603-634
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-11-issue-10/603-634.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijrsi/articles/innovative-systems-for-renewable-energy-integration-harnessing-ai-blockchain-and-hybrid-technologies-a-review/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Levin, Todd & Kwon, Jonghwan & Botterud, Audun, 2019. "The long-term impacts of carbon and variable renewable energy policies on electricity markets," Energy Policy, Elsevier, vol. 131(C), pages 53-71.
    2. Deukyoung Lee & Sung-Kwan Joo, 2023. "Economic Analysis of Large-Scale Renewable Energy (RE) Source Investment Incorporating Power System Transmission Costs," Energies, MDPI, vol. 16(21), pages 1-16, November.
    3. Sam Aflaki & Serguei Netessine, 2017. "Strategic Investment in Renewable Energy Sources: The Effect of Supply Intermittency," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 489-507, July.
    4. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    5. Craig M.T. Johnston & G. Cornelis van Kooten, 2014. "Carbon Neutrality of Hardwood and Softwood Biomass: Issues of Temporal Preference," Working Papers 2014-06, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yue & Jiao, Bing & Li, Lin & Zhao, Ruiqing, 2024. "Does bank-tax-interaction benefit small and medium manufacturer? An intertemporal signaling game," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    3. Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
    4. Gökay Yörük & Ugur Bac & Fatma Yerlikaya-Özkurt & Kamil Demirberk Ünlü, 2023. "Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    5. Narasimhan, Arunkumar & Kamal, Rajeev & Almatrafi, Eydhah, 2022. "Novel synergetic integration of supercritical carbon dioxide Brayton cycle and adsorption desalination," Energy, Elsevier, vol. 238(PB).
    6. Xu, Qingyu & Hobbs, Benjamin F., 2021. "Economic efficiency of alternative border carbon adjustment schemes: A case study of California Carbon Pricing and the Western North American power market," Energy Policy, Elsevier, vol. 156(C).
    7. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    8. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    9. Noll, Mark D. & Mann, W. Neal & Levin, Todd, 2025. "An empirical analysis of supply offers in the ERCOT operating reserves markets," Applied Energy, Elsevier, vol. 381(C).
    10. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2015. "Economics of co-firing coal and biomass: An application to Western Canada," Energy Economics, Elsevier, vol. 48(C), pages 7-17.
    11. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
    12. Chew, Alvin Wei Ze & Law, Adrian Wing-Keung, 2018. "DRFM hybrid model to optimize energy performance of pre-treatment depth filters in desalination facilities," Applied Energy, Elsevier, vol. 220(C), pages 576-597.
    13. Cabrera, Pedro & Carta, José A. & Matos, Carlos & Rosales-Asensio, Enrique & Lund, Henrik, 2024. "Reduced desalination carbon footprint on islands with weak electricity grids. The case of Gran Canaria," Applied Energy, Elsevier, vol. 358(C).
    14. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    15. Godart, Peter, 2021. "Design and simulation of a heat-driven direct reverse osmosis device for seawater desalination powered by solar thermal energy," Applied Energy, Elsevier, vol. 284(C).
    16. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    17. Han, D. & He, W.F. & Yue, C. & Pu, W.H., 2017. "Study on desalination of zero-emission system based on mechanical vapor compression," Applied Energy, Elsevier, vol. 185(P2), pages 1490-1496.
    18. Morciano, Matteo & Fasano, Matteo & Bergamasco, Luca & Albiero, Alessandro & Lo Curzio, Mario & Asinari, Pietro & Chiavazzo, Eliodoro, 2020. "Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets," Applied Energy, Elsevier, vol. 258(C).
    19. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    20. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:10:p:603-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.