IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3657-d1442353.html
   My bibliography  Save this article

Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters

Author

Listed:
  • Diego Peña

    (Department of Electrical Engineering, University of Jaen, 23700 Jaen, Spain)

  • Paul Arevalo

    (Department of Electrical Engineering, University of Jaen, 23700 Jaen, Spain
    Faculty of Engineering, Department of Electrical Engineering, Electronics and Telecommunications (DEET), University of Cuenca, Balzay Campus, 010107 Cuenca, Azuay, Ecuador)

  • Yadyra Ortiz

    (Department of Electrical Engineering, University of Jaen, 23700 Jaen, Spain)

  • Franciso Jurado

    (Department of Electrical Engineering, University of Jaen, 23700 Jaen, Spain)

Abstract

Microgrids play a crucial role in modern energy systems by integrating diverse energy sources and enhancing grid resilience. This study addresses the optimization of microgrids through the deployment of high-efficiency converters, aiming to improve energy management and operational efficiency. This study explores the pivotal role of AC-DC and DC-DC bidirectional converters in facilitating energy conversion and management across various sources and storage systems within microgrids. Advanced control methodologies, including model-based predictive control and artificial intelligence, are analyzed for their ability to dynamically adapt to fluctuations in power generation and demand, thereby enhancing microgrid performance. The findings highlight that implementing high-efficiency converters not only enhances power stability and quality but also reduces operational costs and carbon emissions, thereby reinforcing microgrids as a sustainable and effective solution for contemporary energy management challenges. This research contributes to advancing the understanding and implementation of efficient energy systems in microgrids, promoting their widespread adoption in diverse applications.

Suggested Citation

  • Diego Peña & Paul Arevalo & Yadyra Ortiz & Franciso Jurado, 2024. "Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters," Energies, MDPI, vol. 17(15), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3657-:d:1442353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios Yiasoumas & Lazar Berbakov & Valentina Janev & Alessandro Asmundo & Eneko Olabarrieta & Andrea Vinci & Giovanni Baglietto & George E. Georghiou, 2023. "Key Aspects and Challenges in the Implementation of Energy Communities," Energies, MDPI, vol. 16(12), pages 1-24, June.
    2. Alzahrani, Ahmad & Sajjad, Khizar & Hafeez, Ghulam & Murawwat, Sadia & Khan, Sheraz & Khan, Farrukh Aslam, 2023. "Real-time energy optimization and scheduling of buildings integrated with renewable microgrid," Applied Energy, Elsevier, vol. 335(C).
    3. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    4. Afkar, Mohammad & Gavagsaz-Ghoachani, Roghayeh & Phattanasak, Matheepot & Pierfederici, Serge, 2024. "Voltage-balancing of two controllers for a DC-DC converter-based DC microgrid with experimental verification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 159-179.
    5. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    6. Matej Tkac & Martina Kajanova & Peter Bracinik, 2023. "A Review of Advanced Control Strategies of Microgrids with Charging Stations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    7. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    8. Senthilnathan Rajendran & Vigneysh Thangavel & Narayanan Krishnan & Natarajan Prabaharan, 2023. "DC Link Voltage Enhancement in DC Microgrid Using PV Based High Gain Converter with Cascaded Fuzzy Logic Controller," Energies, MDPI, vol. 16(9), pages 1-28, May.
    9. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    10. Naveena Bhargavi Repalle & Pullacheri Sarala & Lucian Mihet-Popa & Shashidhar Reddy Kotha & Nagalingam Rajeswaran, 2022. "Implementation of a Novel Tabu Search Optimization Algorithm to Extract Parasitic Parameters of Solar Panel," Energies, MDPI, vol. 15(13), pages 1-12, June.
    11. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    2. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    3. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    4. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
    5. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
    6. Kounetas, Konstantinos & Mourtos, Ioannis & Tsekouras, Konstantinos, 2012. "Is energy intensity important for the productivity growth of EET adopters?," Energy Economics, Elsevier, vol. 34(4), pages 930-941.
    7. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    8. Belqasem Aljafari & Gunapriya Devarajan & Sivaranjani Subramani & Subramaniyaswamy Vairavasundaram, 2023. "Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    9. Teg Alam, 2024. "Assessing the Energy Efficiency of Saudi Arabia's Relatively Middle Eastern Countries in the Context of Sustainable Development Goal Seven (SDG7)," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 690-696, November.
    10. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.
    11. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    12. Daniela Artemisa Calu & Adriana Ana Maria Davidescu & Alina Mihaela Irimescu & Corina-Graziella Batca Dumitru & Viorel Avram, 2023. "Implementation of Energy Efficiency Improvement Measures in Romania and the Role of Professional Accountants," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 479-479, April.
    13. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    14. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    15. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    16. Tanja Kamin & Urša Golob & Tina Kogovšek, 2025. "Barriers to the Diffusion of Clean Energy Communities: Comparing Early Adopters and the General Public," Energies, MDPI, vol. 18(9), pages 1-20, April.
    17. Nel, A.J.H. & Vosloo, J.C. & Mathews, M.J., 2018. "Financial model for energy efficiency projects in the mining industry," Energy, Elsevier, vol. 163(C), pages 546-554.
    18. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    19. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    20. Yilin Xu & Zeping Hu, 2024. "Source-Grid-Load Cross-Area Coordinated Optimization Model Based on IGDT and Wind-Photovoltaic-Photothermal System," Sustainability, MDPI, vol. 16(5), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3657-:d:1442353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.