IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16725-d1297795.html
   My bibliography  Save this article

A Supply Chain-Oriented Model to Predict Crude Oil Import Prices in South Korea Based on the Hybrid Approach

Author

Listed:
  • Jisung Jo

    (Logistics and Maritime Industry Research Department, Korea Maritime Institute, Busan 49111, Republic of Korea)

  • Umji Kim

    (Northern and Polar Regions Research Division, Korea Maritime Institute, Busan 49111, Republic of Korea)

  • Eonkyung Lee

    (Logistics and Maritime Industry Research Department, Korea Maritime Institute, Busan 49111, Republic of Korea)

  • Juhyang Lee

    (Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea)

  • Sewon Kim

    (Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea)

Abstract

Although numerous studies have explored key variables for forecasting crude oil prices, the role of supply chain factors has often been overlooked. In the face of global risks such as COVID-19, the Russia–Ukraine war, and the U.S.–China trade dispute, supply chain management (SCM) has evolved beyond an individual company’s concern. This research investigates the impact of a supply chain-oriented variable on the forecasting of crude oil import prices in South Korea. Our findings reveal that models incorporating the Global Supply Chain Pressure Index (GSCPI) outperform those without it, emphasizing the importance of monitoring supply chain-related variables for stabilizing domestic prices for policy makers. Additionally, we propose a novel hybrid factor-based approach that integrates time series and machine learning models to enhance the prediction performance of oil prices. This endeavor is poised to serve as a foundational step toward developing methodologically sound forecasting models for oil prices, offering valuable insights for policymakers.

Suggested Citation

  • Jisung Jo & Umji Kim & Eonkyung Lee & Juhyang Lee & Sewon Kim, 2023. "A Supply Chain-Oriented Model to Predict Crude Oil Import Prices in South Korea Based on the Hybrid Approach," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16725-:d:1297795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    2. Kilian, Lutz, 2017. "How the Tight Oil Boom Has Changed Oil and Gasoline Markets," CEPR Discussion Papers 11876, C.E.P.R. Discussion Papers.
    3. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    4. Serdar Kabaca & Kerem Tuzcuoglu, 2023. "Supply Drivers of US Inflation Since the COVID-19 Pandemic," Staff Working Papers 23-19, Bank of Canada.
    5. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    6. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    7. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
    8. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    9. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    10. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    2. Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
    3. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    4. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    5. Chen, Haixin & Liu, Yancheng & Li, Xiangjie & Gu, Xiang & Fan, Kun, 2024. "Oil market regulatory: An ensembled model for prediction," Finance Research Letters, Elsevier, vol. 67(PA).
    6. Amar Rao & Marco Tedeschi & Kamel Si Mohammed & Umer Shahzad, 2024. "Role of Economic Policy Uncertainty in Energy Commodities Prices Forecasting: Evidence from a Hybrid Deep Learning Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3295-3315, December.
    7. Cortazar, Gonzalo & Ortega, Hector & Valencia, Consuelo, 2021. "How good are analyst forecasts of oil prices?," Energy Economics, Elsevier, vol. 102(C).
    8. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    9. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    10. Yan, Zichun & Tian, Fangzhu & Sun, Yuying & Wang, Shouyang, 2024. "A time-frequency-based interval decomposition ensemble method for forecasting gasoil prices under the trend of low-carbon development," Energy Economics, Elsevier, vol. 134(C).
    11. Arroyo Marioli,Francisco & Khadan,Jeetendra & Ohnsorge,Franziska Lieselotte & Yamazaki,Takefumi, 2023. "Forecasting Industrial Commodity Prices : Literature Review and a Model Suite," Policy Research Working Paper Series 10611, The World Bank.
    12. Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
    13. Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
    14. Sen, Abhibasu & Dutta Choudhury, Karabi, 2024. "Forecasting the Crude Oil prices for last four decades using deep learning approach," Resources Policy, Elsevier, vol. 88(C).
    15. Qin, Quande & Xie, Kangqiang & He, Huangda & Li, Li & Chu, Xianghua & Wei, Yi-Ming & Wu, Teresa, 2019. "An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction," Energy Economics, Elsevier, vol. 83(C), pages 402-414.
    16. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    17. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    18. Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    19. Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
    20. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16725-:d:1297795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.