IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8315-d1151271.html
   My bibliography  Save this article

The Impact of China’s National Sustainable Development Experimental Zone Policy on Energy Transition

Author

Listed:
  • Chuanjia Du

    (College of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Chengjun Wang

    (College of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Tao Feng

    (College of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

Energy transition plays a crucial role in supporting sustainable economic growth and the reduction in carbon emissions. In fact, China implemented the national sustainable development experimental zone policy to achieve sustainable development goals, including an energy transition. This paper divided the energy transition dimension into energy consumption and carbon dioxide emissions based on the perspectives of energy input and output. Furthermore, using panel data for 214 cities at the prefecture level in China from 2006 to 2019, the study measured the impact of the national sustainable development experimental zone policy on energy transitions by employing a difference-in-difference (DID) model and an intermediary effect model. The results showed that the national sustainable development experimental zone policy reduced energy consumption and carbon dioxide emissions and accelerated energy transition. The conclusions still held after a series of robustness tests. Additionally, the results of the heterogeneity analysis of different experimental zone types indicated that, compared with prefecture-level experimental zones, county experimental zones play a more obvious role in reducing energy consumption and carbon dioxide emissions. In addition, the results of the heterogeneity analysis of the urban geographical location showed that the national sustainable development experimental zone policy had different negative effects on urban energy consumption and carbon dioxide emissions in different regions, and the impact of policy on energy transition was experienced, in decreasing order, by the western, central, and eastern regions. The results of the mechanism verification indicated that the national sustainable development experimental zone policy can affect energy consumption and carbon dioxide emissions via technological progress and upgrading industrial structure, which had a relatively high aggregation order in the variables deployed.

Suggested Citation

  • Chuanjia Du & Chengjun Wang & Tao Feng, 2023. "The Impact of China’s National Sustainable Development Experimental Zone Policy on Energy Transition," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8315-:d:1151271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad, Munir & Wu, Yiyun, 2022. "Natural resources, technological progress, and ecological efficiency: Does financial deepening matter for G-20 economies?," Resources Policy, Elsevier, vol. 77(C).
    2. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    3. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    4. Eduardo Medeiros & Arno Van Der Zwet, 2020. "Evaluating Integrated Sustainable Urban Development Strategies: a methodological framework applied in Portugal," European Planning Studies, Taylor & Francis Journals, vol. 28(3), pages 563-582, March.
    5. Yu, Feifei & Wang, Liting & Li, Xiaotong, 2020. "The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation," Energy Policy, Elsevier, vol. 141(C).
    6. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    7. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    8. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    10. Junxia Ma & Zilong Zhang & Chenyu Lu & Bing Xue, 2020. "Could the Construction of Sustainable Development Pilot Zones Improve the Urban Environment Efficiency in China?," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-9, March.
    11. Song, Malin & Zheng, Huanyu & Shen, Zhiyang & Chen, Boyang, 2023. "How financial technology affects energy transformation in China," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    12. Jean Bonnet & Eva Coll-Martínez & Patricia Renou-Maissant, 2021. "Evaluating Sustainable Development by Composite Index: Evidence from French Departments," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    13. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    14. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    15. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    16. Guoping Ding & Jingqian Hua & Juntao Duan & Sixia Deng & Wenyu Zhang & Yifan Gong & Huaping Sun, 2022. "Research on the Strategy of Industrial Structure Optimization Driven by Green Credit Distribution," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    17. Lee, Chien-Chiang & Feng, Yi & Peng, Diyun, 2022. "A green path towards sustainable development: The impact of low-carbon city pilot on energy transition," Energy Economics, Elsevier, vol. 115(C).
    18. Jintao Ma & Qiuguang Hu & Weiteng Shen & Xinyi Wei, 2021. "Does the Low-Carbon City Pilot Policy Promote Green Technology Innovation? Based on Green Patent Data of Chinese A-Share Listed Companies," IJERPH, MDPI, vol. 18(7), pages 1-18, April.
    19. Liang Chen & Wanli Li & Kaibin Yuan & Xiaoqian Zhang, 2022. "Can informal environmental regulation promote industrial structure upgrading? Evidence from China," Applied Economics, Taylor & Francis Journals, vol. 54(19), pages 2161-2180, April.
    20. Ouyang, Xiaoling & Li, Qiong & Du, Kerui, 2020. "How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data," Energy Policy, Elsevier, vol. 139(C).
    21. Xu, Jin-Hua & Yi, Bo-Wen & Fan, Ying, 2020. "Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China," Energy Economics, Elsevier, vol. 91(C).
    22. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    23. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    24. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Jamal, Taskin & Dyduch, Joanna & Arif, M.T. & Manoj Kumar, Nallapaneni & Shafiullah, GM & Chopra, Shauhrat S. & Nadarajah, Mithulananthan, 2021. "Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world," Applied Energy, Elsevier, vol. 292(C).
    25. Zhenglin Sun & Jinyue Zhang, 2022. "Impact of Resource-Saving and Environment-Friendly Society Construction on Sustainability," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    26. Minihan, Erin S. & Wu, Ziping, 2012. "Economic structure and strategies for greenhouse gas mitigation," Energy Economics, Elsevier, vol. 34(1), pages 350-357.
    27. Cui, Lianbiao & Li, Rongjing & Song, Malin & Zhu, Lei, 2019. "Can China achieve its 2030 energy development targets by fulfilling carbon intensity reduction commitments?," Energy Economics, Elsevier, vol. 83(C), pages 61-73.
    28. Patricia Renou-Maissant & Jean Bonnet & Eva Coll-Martinez, 2021. "Evaluating Sustainable Development by Composite Index: Evidence from French Departments," Post-Print hal-03637639, HAL.
    29. Solomon, Barry D. & Krishna, Karthik, 2011. "The coming sustainable energy transition: History, strategies, and outlook," Energy Policy, Elsevier, vol. 39(11), pages 7422-7431.
    30. Luis Miguel Fonseca & José Pedro Domingues & Alina Mihaela Dima, 2020. "Mapping the Sustainable Development Goals Relationships," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    31. Lisa Hanna Broska & Stefan Vögele & Hawal Shamon & Inga Wittenberg, 2022. "On the Future(s) of Energy Communities in the German Energy Transition: A Derivation of Transformation Pathways," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    32. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
    33. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    34. Weixing Lin & Changqiao Hong & Yinkang Zhou, 2020. "Multi-Scale Evaluation of Suzhou City’s Sustainable Development Level Based on the Sustainable Development Goals Framework," Sustainability, MDPI, vol. 12(3), pages 1-28, January.
    35. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    36. Niki Derlukiewicz & Anna Mempel-Śnieżyk & Dominika Mankowska & Arkadiusz Dyjakon & Stanisław Minta & Tomasz Pilawka, 2020. "How do Clusters Foster Sustainable Development? An Analysis of EU Policies," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chien-Chiang & Feng, Yi & Peng, Diyun, 2022. "A green path towards sustainable development: The impact of low-carbon city pilot on energy transition," Energy Economics, Elsevier, vol. 115(C).
    2. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    3. Ding, Wangwang & Du, Juntao & Kazancoglu, Yigit & Mangla, Sachin Kumar & Song, Malin, 2023. "Financial development and the energy net-zero transformation potential," Energy Economics, Elsevier, vol. 125(C).
    4. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).
    5. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    6. Xiaoqi Li & Dingfei Guo & Chao Feng, 2022. "The Carbon Emissions Trading Policy of China: Does It Really Promote the Enterprises’ Green Technology Innovations?," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    7. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    8. Shang, Hua & Jiang, Li & Pan, Xianyou & Pan, Xiongfeng, 2022. "Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 114(C).
    9. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    10. Su, Xiang & Tan, Junlan, 2023. "Regional energy transition path and the role of government support and resource endowment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    11. Lingyan Meng & Md Qamruzzaman & Anass Hamad Elneel Adow, 2021. "Technological Adaption and Open Innovation in SMEs: An Strategic Assessment for Women-Owned SMEs Sustainability in Bangladesh," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    12. Yan, Chen & Ji, Yaxing & Chen, Rui, 2023. "Research on the mechanism of selective industrial policies on enterprises' innovation performance ——Evidence from China's photovoltaic industry," Renewable Energy, Elsevier, vol. 215(C).
    13. Qi, Xiulin & Wu, Zhifang & Xu, Jinqing & Shan, Biaoan, 2023. "Environmental justice and green innovation: A quasi-natural experiment based on the establishment of environmental courts in China," Ecological Economics, Elsevier, vol. 205(C).
    14. Shuai Guan & Jinquan Liu & Yongfu Liu & Mingze Du, 2022. "The Nonlinear Influence of Environmental Regulation on the Transformation and Upgrading of Industrial Structure," IJERPH, MDPI, vol. 19(14), pages 1-16, July.
    15. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    16. Alan Randall, 2022. "Driving with Eyes on the Rear-View Mirror—Why Weak Sustainability Is Not Enough," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    17. Tomas Macak & Jan Hron & Jaromir Stusek, 2020. "A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    18. Lee, Chien-Chiang & He, Zhi-Wen, 2022. "Natural resources and green economic growth: An analysis based on heterogeneous growth paths," Resources Policy, Elsevier, vol. 79(C).
    19. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    20. Cai, Jinyang & Zheng, Huanyu & Vardanyan, Michael & Shen, Zhiyang, 2023. "Achieving carbon neutrality through green technological progress: evidence from China," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8315-:d:1151271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.