IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9577-d880245.html
   My bibliography  Save this article

Automated Surveillance of Lepidopteran Pests with Smart Optoelectronic Sensor Traps

Author

Listed:
  • Taylor J. Welsh

    (The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch 8140, New Zealand)

  • Daniel Bentall

    (The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch 8140, New Zealand)

  • Connor Kwon

    (The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch 8140, New Zealand)

  • Flore Mas

    (The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch 8140, New Zealand)

Abstract

Several lepidopterans are pests in horticulture and pose biosecurity risks to trading countries worldwide. Efficient species-specific semiochemical lures are available for some of these pests, facilitating the implementation of surveillance programmes via trapping networks. These networks have a long history of success in detecting incursions of invasive species; however, their reliance on manual trap inspections makes these surveillance programmes expensive to run. Novel smart traps integrating sensor technology are being developed to detect insects automatically but are so far limited to expensive camera-based sensors or optoelectronic sensors for fast-moving insects. Here, we present the development of an optoelectronic sensor adapted to a delta-type trap to record the low wing-beat frequencies of Lepidoptera, and remotely send real-time digital detection via wireless communication. These new smart traps, combined with machine-learning algorithms, can further facilitate diagnostics via species identification through biometrics. Our laboratory and field trials have shown that moths flying in/out of the trap can be detected automatically before visual trap catch, thus improving early detection. The deployment of smart sensor traps for biosecurity will significantly reduce the cost of labour by directing trap visits to the locations of insect detection, thereby supporting a sustainable and low-carbon surveillance system.

Suggested Citation

  • Taylor J. Welsh & Daniel Bentall & Connor Kwon & Flore Mas, 2022. "Automated Surveillance of Lepidopteran Pests with Smart Optoelectronic Sensor Traps," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9577-:d:880245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 178-194, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kent Kovacs & Thomas Holmes & Jeffrey Englin & Janice Alexander, 2011. "The Dynamic Response of Housing Values to a Forest Invasive Disease: Evidence from a Sudden Oak Death Infestation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(3), pages 445-471, July.
    2. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    3. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    4. Warziniack, Travis W. & Finnoff, David & Shogren, Jason F., 2013. "Public economics of hitchhiking species and tourism-based risk to ecosystem services," Resource and Energy Economics, Elsevier, vol. 35(3), pages 277-294.
    5. David Simpson, 2008. "Preventing Biological Invasions: Doing Something vs. Doing Nothing," NCEE Working Paper Series 200811, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Nov 2008.
    6. Jardine, Sunny L. & Sanchirico, James N., 2018. "Estimating the cost of invasive species control," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 242-257.
    7. Charles Perrings, 2016. "Options for managing the infectious animal and plant disease risks of international trade," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 27-35, February.
    8. Perrings, Charles, 2014. "Environment and development economics 20 years on," Environment and Development Economics, Cambridge University Press, vol. 19(3), pages 333-366, June.
    9. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    10. Olson, Lars J. & Roy, Santanu, 2010. "Dynamic sanitary and phytosanitary trade policy," Journal of Environmental Economics and Management, Elsevier, vol. 60(1), pages 21-30, July.
    11. Lee, Donna J. & Motoki, Michael & Vanderwoude, Casper & Nakamoto, Stuart T. & Leung, PingSun, 2015. "Taking the sting out of Little Fire Ant in Hawaii," Ecological Economics, Elsevier, vol. 111(C), pages 100-110.
    12. Courtois, Pierre & Figuieres, Charles & Mulier, Chloe & Weill, Joakim, 2018. "A Cost–Benefit Approach for Prioritizing Invasive Species," Ecological Economics, Elsevier, vol. 146(C), pages 607-620.
    13. Paul Mwebaze & Jim Monaghan & Nicola Spence & Alan MacLeod & Martin Hare & Brian Revell, 2010. "Modelling the Risks Associated with the Increased Importation of Fresh Produce from Emerging Supply Sources Outside the EU to the UK," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(1), pages 97-121, February.
    14. McDermott, Shana M. & Finnoff, David C., 2016. "Impact of repeated human introductions and the Allee effect on invasive species spread," Ecological Modelling, Elsevier, vol. 329(C), pages 100-111.
    15. Carlier, Alexis & Treich, Nicolas, 2020. "Directly Valuing Animal Welfare in (Environmental) Economics," International Review of Environmental and Resource Economics, now publishers, vol. 14(1), pages 113-152, April.
    16. Cacho, Oscar J. & Hester, Susan M., 2011. "Deriving efficient frontiers for effort allocation in the management of invasive species," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-18.
    17. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 178-194, April.
    18. Epanchin-Niell, Rebecca S. & Wilen, James E., 2012. "Optimal spatial control of biological invasions," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 260-270.
    19. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    20. Shuyao Wu & Jiao Huang & Shuangcheng Li, 2020. "Classifying ecosystem disservices and comparing their effects with ecosystem services in Beijing, China," Papers 2001.01605, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9577-:d:880245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.