IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5844-d813569.html
   My bibliography  Save this article

Integrated Carbon Footprint and Economic Performance of Five Types of Dominant Cropping Systems in China’s Semiarid Zone

Author

Listed:
  • Danqi Luo

    (State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)

  • Gang Xu

    (State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)

  • Jiao Luo

    (State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)

  • Xia Cui

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730020, China)

  • Shengping Shang

    (State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)

  • Haiyan Qian

    (State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)

Abstract

Crop production requires large areas of land and makes an important contribution to greenhouse gas emissions. Cleaner production of all crop types could be of great significance to realizing carbon neutrality as soon as possible. The present study adopted life cycle assessment (LCA) combined with the profit accounting method of input-output to compare the differences in greenhouse gas emissions in the entire life cycle of apple ( Malus pumila Mill.), grain maize ( Zea mays L.), wheat ( Triticum aestivum L.), silage maize ( Zea mays L.), and alfalfa ( Medicago sativa Linn.) production in eastern Gansu Province with three functional units, including per ha of land, per ton of product, and per 10,000 yuan of output value. The results showed that apple had the largest carbon footprint per ha. Wheat had the largest carbon footprint per ton of product and per 10,000 yuan output. The results of LCA inventory sensitivity analysis showed that the main sources of greenhouse gas emissions for all crops were the production process of agricultural materials such as chemical fertilizer, machinery, and agricultural film. In particular, the excessive input of chemical fertilizer was the driving factor resulting in greenhouse gas emissions. Based on the study results, this paper also puts forward certain suggestions on the future land use of the cropping systems in the study area.

Suggested Citation

  • Danqi Luo & Gang Xu & Jiao Luo & Xia Cui & Shengping Shang & Haiyan Qian, 2022. "Integrated Carbon Footprint and Economic Performance of Five Types of Dominant Cropping Systems in China’s Semiarid Zone," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5844-:d:813569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bonnin, Dennis & Tabacco, Ernesto & Borreani, Giorgio, 2021. "Variability of greenhouse gas emissions and economic performances on 10 Piedmontese beef farms in North Italy," Agricultural Systems, Elsevier, vol. 194(C).
    2. Démurger, Sylvie & Xu, Hui, 2011. "Return Migrants: The Rise of New Entrepreneurs in Rural China," World Development, Elsevier, vol. 39(10), pages 1847-1861.
    3. Hua, Guowei & Cheng, T.C.E. & Wang, Shouyang, 2011. "Managing carbon footprints in inventory management," International Journal of Production Economics, Elsevier, vol. 132(2), pages 178-185, August.
    4. Li, Zhou & Zhang, Qingping & Wei, Wanrong & Cui, Song & Tang, Wei & Li, Yuan, 2020. "Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Lambotte, Mathieu & De Cara, Stéphane & Brocas, Catherine & Bellassen, Valentin, 2021. "Carbon footprint and economic performance of dairy farms: The case of protected designation of origin farms in France," Agricultural Systems, Elsevier, vol. 186(C).
    6. Pingping Wang & Wendong Zhang & Minghao Li & Yijun Han, 2019. "Does Fertilizer Education Program Increase the Technical Efficiency of Chemical Fertilizer Use? Evidence from Wheat Production in China," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    7. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    8. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    9. Mathieu Lambotte & Stéphane de Cara & Catherine Brocas & Valentin Bellassen, 2021. "Carbon footprint and economic performance of dairy farms: the case of protected designation of origin dairy farms in France [Bilan carbone et performance économique des exploitations laitières : le," Post-Print hal-03021963, HAL.
    10. Timothy D. Searchinger & Stefan Wirsenius & Tim Beringer & Patrice Dumas, 2018. "Assessing the efficiency of changes in land use for mitigating climate change," Nature, Nature, vol. 564(7735), pages 249-253, December.
    11. Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyun Luo & Xiangyi Lin, 2022. "Dynamic Analysis of Industrial Carbon Footprint and Carbon-Carrying Capacity of Zhejiang Province in China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellassen Valentin & Drut Marion & Diallo Abdoul & Antonioli Federico & Donati Michele & Brečić Ružica & Ferrer-Pérez Hugo & Gauvrit Lisa & Hoang Viet & Nguyen An & Knutsen Steinnes Kamilla & Vittersø, 2021. "The Carbon and Land Footprint of Certified Food Products," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 113-126, December.
    2. Lin Xie & Zeyuan Qiu & Liangzhi You & Yang Kang, 2020. "A Macro Perspective on the Relationship between Farm Size and Agrochemicals Use in China," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    3. Battini, Daria & Persona, Alessandro & Sgarbossa, Fabio, 2014. "A sustainable EOQ model: Theoretical formulation and applications," International Journal of Production Economics, Elsevier, vol. 149(C), pages 145-153.
    4. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    5. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    6. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    7. Mallidis, Ioannis & Vlachos, Dimitrios & Iakovou, Eleftherios & Dekker, Rommert, 2014. "Design and planning for green global supply chains under periodic review replenishment policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 210-235.
    8. Mukunda Choudhury & Sujit Kumar De & Gour Chandra Mahata, 2023. "A pollution-sensitive multistage production-inventory model for deteriorating items considering expiration date under Stackelberg game approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11847-11884, October.
    9. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    10. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    11. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    12. Yenipazarli, Arda, 2016. "Managing new and remanufactured products to mitigate environmental damage under emissions regulation," European Journal of Operational Research, Elsevier, vol. 249(1), pages 117-130.
    13. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.
    14. Juanjuan Qin & Liguo Ren & Liangjie Xia, 2017. "Carbon Emission Reduction and Pricing Strategies of Supply Chain under Various Demand Forecasting Scenarios," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-27, February.
    15. Henrik B. Møller & Peter Sørensen & Jørgen E. Olesen & Søren O. Petersen & Tavs Nyord & Sven G. Sommer, 2022. "Agricultural Biogas Production—Climate and Environmental Impacts," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    16. Jiseong Noh & Jong Soo Kim & Seung-June Hwang, 2020. "A Multi-Item Replenishment Problem with Carbon Cap-and-Trade under Uncertainty," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    17. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    18. Chirantan Mondal & Bibhas C. Giri, 2022. "Analyzing a manufacturer-retailer sustainable supply chain under cap-and-trade policy and revenue sharing contract," Operational Research, Springer, vol. 22(4), pages 4057-4092, September.
    19. Mahé, Clothilde, 2016. "Skills and entrepreneurship: Are return migrants 'Jacks-of-all-trades'?," MERIT Working Papers 2016-071, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    20. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5844-:d:813569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.