IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v146y2016icp1-10.html
   My bibliography  Save this article

Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland

Author

Listed:
  • Zhang, Guo
  • Wang, Xiaoke
  • Sun, Binfeng
  • Zhao, Hong
  • Lu, Fei
  • Zhang, Lu

Abstract

The overuse of mineral nitrogen (N) fertilizer is widespread and affects greenhouse gas (GHG) emission in China. In 2013, the Ministry of Agriculture released the ‘Recommendation for soil nutrient analysis-based mineral fertilizer application for corn, wheat and rice’ (hereafter the Recommendation). The aims of this study were to estimate current mineral N fertilization and net mitigation potential (NMP) for the Recommendation in the three main crops in China. To estimate the NMP from the Recommendation concerning the fertilizer recommendation (FR) scenario, we designed a current situation (CS) scenario by conducting a field questionnaire survey across typical cropping regions in China. Our results indicate that annual N fertilization amount was 19.1±1.2 (95% confidence interval) Mt N applied to the 66Mha of Chinese cropland in the CS scenario and would decrease by about 7.1Mt N in the FR scenario. This decrease might mitigate 37.4±5.2% of GHG emissions including carbon dioxide (CO2) from production and transport of N fertilizer, and nitrous oxide from soil due to N fertilization. Carbon (C) sequestration was 11.1±0.71TgCyr−1 under both scenarios. The NMP was 23.9±3.4TgCeqyr−1 in the FR scenario and might offset 1.1±0.16% of CO2 emissions from fossil fuel combustion in 2011 in China. In conclusion, implementation of the Recommendation could be a sustainable and cost-effective N management system to mitigate GHG emissions in Chinese cropland.

Suggested Citation

  • Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.
  • Handle: RePEc:eee:agisys:v:146:y:2016:i:c:p:1-10
    DOI: 10.1016/j.agsy.2016.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1630052X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Lal, 2007. "Carbon Management in Agricultural Soils," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 303-322, February.
    2. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    3. Neville Millar & G. Robertson & Peter Grace & Ron Gehl & John Hoben, 2010. "Nitrogen fertilizer management for nitrous oxide (N 2 O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(2), pages 185-204, February.
    4. Ma, Wenqi & Li, Jianhui & Ma, Lin & Wang, Fanghao & Sisák, István & Cushman, Gregory & Zhang, Fusuo, 2008. "Nitrogen flow and use efficiency in production and utilization of wheat, rice, and maize in China," Agricultural Systems, Elsevier, vol. 99(1), pages 53-63, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si, Zhuanyun & Zain, Muhammad & Li, Shuang & Liu, Junming & Liang, Yueping & Gao, Yang & Duan, Aiwang, 2021. "Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Jiujin Lu & Yunzhang Xu & Haiyan Sheng & Yajun Gao & Jim Moir & Rong Zhang & Shouzhong Xie, 2022. "Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai–Tibetan Plateau," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    3. Jianling Fan & Dengwei Guo & Lu Han & Cuiying Liu & Chuanhong Zhang & Jianan Xie & Junzhao Niu & Liwen Yin, 2022. "Spatiotemporal Dynamics of Carbon Footprint of Main Crop Production in China," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    4. Jianfei Shen & Erli Dan & Yalin Lu & Yiwei Guo, 2021. "Exploratory Research on Overfertilization in Grain Production and Its Relationship with Financial Factors: Evidence from China," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    5. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    6. Hongpeng Guo & Xin Yi & Chulin Pan & Baiming Yang & Yin Li, 2021. "Analysis on the Temporal and Spatial Features of the Coupling and Coordination of Industrialization and Agricultural Green Development in China during 1990–2019," IJERPH, MDPI, vol. 18(16), pages 1-27, August.
    7. Qingmeng Tong & Lu Zhang & Junbiao Zhang, 2017. "Evaluation of GHG Mitigation Measures in Rice Cropping and Effects of Farmer’s Characteristics: Evidence from Hubei, China," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    8. Danqi Luo & Gang Xu & Jiao Luo & Xia Cui & Shengping Shang & Haiyan Qian, 2022. "Integrated Carbon Footprint and Economic Performance of Five Types of Dominant Cropping Systems in China’s Semiarid Zone," Sustainability, MDPI, vol. 14(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    2. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    3. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    4. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    5. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    6. Khor, Ling & Zeller, Manfred, 2015. "Perception of Substandard Fertilizer and Its Impact on Use Intensity," 2015 Conference, August 9-14, 2015, Milan, Italy 211843, International Association of Agricultural Economists.
    7. Rosalina Armando Tamele & Hideto Ueno & Yo Toma & Nobuki Morita, 2020. "Nitrogen Recoveries and Nitrogen Use Efficiencies of Organic Fertilizers with Different C/N Ratios in Maize Cultivation with Low-Fertile Soil by 15 N Method," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    8. Aurore Philibert & Chantal Loyce & David Makowski, 2012. "Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    9. Ke Xu & Chunmei Wang & Xintong Yang, 2017. "Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    10. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    12. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Grace, Peter R. & Philip Robertson, G. & Millar, Neville & Colunga-Garcia, Manuel & Basso, Bruno & Gage, Stuart H. & Hoben, John, 2011. "The contribution of maize cropping in the Midwest USA to global warming: A regional estimate," Agricultural Systems, Elsevier, vol. 104(3), pages 292-296, March.
    14. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    15. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    17. Mirhaj, M. & Razzak, M.A. & Wahab, M.A., 2014. "Comparison of nitrogen balances and efficiencies in rice cum prawn vs. rice cum fish cultures in Mymensingh, North-Eastern Bangladesh," Agricultural Systems, Elsevier, vol. 125(C), pages 54-62.
    18. Amy W. Ando & Shibashis Mukherjee, 2012. "Benefits of pollution monitoring technology for greenhouse gas offset markets," Economics Bulletin, AccessEcon, vol. 32(1), pages 122-136.
    19. Francisco J. Areal & Wantao Yu & Kevin Tansey & Jiahuan Liu, 2022. "Measuring Sustainable Intensification Using Satellite Remote Sensing Data," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    20. Hardeep Singh & Brian K. Northup & Gurjinder S. Baath & Prashanth P. Gowda & Vijaya G. Kakani, 2020. "Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 819-853, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:146:y:2016:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.